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The setting

• Sequence of decisions to be made impacting 
utility experienced by a group of agents

• Social planner wants to make optimal choices

agents hold private valuation information

knowledge of private information required to 
determine optimal decision at every point in time

new private information potentially arrives after 
each decision
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Example:  a resource – say a government-
owned super-computer – is to be allocated 
repeatedly for 1 week intervals.
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Problem:  Agents’ goals differ from center’s 
goals, but agent cooperation is essential.



The solution framework

• Dynamic mechanism design: 
specification of payment schemes such that 
optimal outcomes are achieved in 
equilibrium.

An extension/generalization of “static” 
mechanism design.
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Does static MD really 
fall short?

• Yes. Rare is the decision scenario that is 
completely independent of future decisions.

• E.g., allocating a resource. What future 
opportunities will there be for procuring 
the resource? What opportunities for 
reselling the resource?
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Tutorial plan

1. Rudimentary review of static mechanism 
design.

2. Dynamic MD basics: modeling of “types” in 
dynamic settings, dynamic equilibrium 
notions.

3. Key solutions so far.

4. Extensions.
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Static mechanism design 

Just social-welfare maximizing, here
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• Many of the marquee static MD results 
have (more complicated) analogs in the 
dynamic setting.

• So start with quick review of static case...

8



9



10

private information
decision,
payments

Mechanism Design



11

Mechanism design

• Specify decision rule (outcome selection), plus a 
monetary charge/payment imposed on each agent.

• Outcome/payments enforced by a center.

• Criteria for success:

social-welfare maximizing (a.k.a., efficient)

individual rational (no agent worse off)

budget properties



Solution concepts
• Strategyproof: reporting true type is always a 

utility-maximizing strategy, regardless of what 
other agents do.

• Ex post incentive compatible: reporting true 
type is utility-maximizing, whatever the types of 
other agents, assuming they’re truthful.       
[same as strategyproof in private values setting]

• Bayes-Nash incentive compatible: reporting true 
type is utility-maximizing, in expectation given 
distribution over others’ types, assuming other 
agents are truthful.
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Efficient static mechanisms: 
the Groves class

• Choose outcome that is social welfare 
maximizing according to agent reports.

• Pay each agent the (combined) reported 
value of all other agents for the chosen 
outcome... minus some quantity 
independent of the agent’s report. 

[Vickrey, 1961; Clarke, 1971; Groves 1973]
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Groves (and nothing else) 
works
• The set of Groves mechanisms exactly 

corresponds to those that are efficient in 
dominant strategies.*

[Green & Laffont, 77], strengthened by [Holmstrom, 79] 

Our freedom is limited to defining the 
agent-independent “charge” term

*For sufficiently rich domains (“for all practical purposes”).
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Efficient mechanism 
design boiled down

1. Align incentives – make each agent’s 
payoff equal to social welfare.

2. Recover funds – have each agent make a 
payment independent of his behavior.
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Efficient mechanism 
design boiled down

1. Align incentives – make each agent’s 
payoff equal to social welfare.

2. Recover funds – have each agent make a 
payment independent of his behavior.
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A little more subtle in dynamic setting...



The VCG mechanism
• A Groves mechanism.

• Defines “charge” term for each agent i equal 
to the value other agents could have obtained 
if i’s interests were ignored.

Each agent’s utility equals contribution to social 
welfare. 

Ex post individual rational (if agents have non-
negative values for all outcomes)

No-deficit... in fact often yields high revenue.
17



The expected externality 
(AGV) mechanism
[Arrow, 79;  d’Aspremont & Gerard-Varet, 79]

• Each agent’s payment is expected social 
welfare others will get given his report, 
minus some uninfluencable quantity.

• Efficient in Bayes-Nash equilibrium.

• Ex ante individual rational.

• Strongly budget-balanced.
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Redistribution mechanisms

• AGV maintains all value with agents, but is only 
weakly efficient and IR, unlike VCG.

• Idea: try to return revenue under VCG back to 
agents – thus improving social welfare – without 
weakening equilibrium or running deficit.

• First reference: [Bailey, 97] for certain allocation 
settings.
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Redistribution mechanism
[Cavallo, 06]
Idea:  leverage domain information to obtain 
“revenue-guarantees”.

For each agent i, compute minimum revenue that i 
could cause to result, given reports of other agents 
(G
i
).

Run VCG.

Give each i payment of G
i
/n.

Applicable to any setting (e.g., combinatorial allocation). In single-
item allocation, coincides with [Bailey, 97] mechanism.
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Lots of interesting recent work 
for case of multi-unit auctions

• [Guo & Conitzer, 07; Moulin, 2007] – worst-
case optimality.

• [Guo & Conitzer, 08] – optimal-in-expectation 
mechanism.

• [Hartline & Roughgarden, 2008] – money 
burning when payments not possible.

• [de Clippel, Naroditskiy, Greenwald, here].
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Much not discussed 
here, e.g.,

• Interdependent (“common”) values settings

• Inefficient mechanism design, concerned 
with, e.g., revenue maximization, maximizing 
the minimum utility, etc.
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Basics of the dynamic 
setting
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Aspects of the problem
• At each time period each agent holds some private 

information (“local state”).

• At each time period, the center selects an action to 
execute, which generates value (of varying degree) for 
agents and yields new local states.

• The (predicted) effects of taking any given action 
depend on state.

• Agents perceive utility of value x obtained k steps in 
future to be γk x, for some 0 < γ ≤ 1.

Key variable: local state.
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Local state

• Encapsulates all information required to 
determine:

a conditional distribution over value the 
agent would obtain for every possible 
action

a conditional distribution over future 
local states for every possible action
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Assumption

• Given the action executed by the center, 
value obtained and subsequent local state 
for each agent are independent of other 
agents’ local states.

Dynamic version of private values.

27



Markov decision 
processes (MDPs)
• State space

• Action space

• Reward function

When a given action is taken in a given state, 
what value results?

• Non-deterministic transition function

When a given action is taken in a given state, 
what new state results?
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So what’s a dynamic 
type?

• It’s an MDP.

Transition dynamics between local states.

Value function for state-action pairs.

Indicator of “current” state.
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• In static setting, type is “complete” and 
reportable. In dynamic setting, type is 
gradually revealed to the agent by nature over 
time.

• It’s not the multiple time steps alone, it’s 
the uncertainty.

• If types are MDPs with no stochastic state 
transitions, we’re in a static MD setting 
– just decide policy at time 0.
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A simple (and important) 
special case: MABs

• Multi-armed bandit problems: a 
special case of the general sequential 
decision-making framework.

• Captures, e.g., single-item repeated 
allocation scenarios.
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A simple (and important) 
special case: MABs

• Each agent’s dynamics can be represented 
by a Markov chain: no multiplicity of 
actions.

• A single action associated with each agent. 
When an agent’s action is chosen, his state 
changes; otherwise, it doesn’t.
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Captures, e.g., repeated 
allocation of a resource
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Captures, e.g., repeated 
allocation of a resource
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DMD setup
• There is a set of actions.

• Each agent has a type represented by an MDP.

• In each period agents report types and the center 
takes an action.

• A dynamic mechanism specifies two things:

a decision policy: a function that maps a joint type to an 
action.

a transfer function: that maps a joint type to a payment 
for each agent.



Basics of the dynamic 
setting: equilibrium 

concepts
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Within-period ex post 
Nash equilibrium

If all other agents play the equilibrium 
strategy in the future, no agent can benefit 
from deviating – regardless of what the joint 
state is and regardless of what came before.
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Within-period ex post 
incentive compatibility

If all other agents report types truthfully in 
the future, no agent can benefit from 
misreporting type – regardless of what the 
joint type is and regardless of what came 
before.
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No incentive to deviate even if agents know everything 
one can know – without being able to see the future.



This is the gold standard

• In a dynamic setting, agents needs to make 
predictions about the future in determining 
how to maximize utility – and this requires 
positing some behavior for other agents.

• Weaker than dominant strategy.

• But if others’ future types were irrelevant 
to the agent’s utility, incentives couldn’t 
possibly be aligned.
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Bayes-Nash equilibrium

Given distribution over other agents’ types, 
no agent can expect to gain from deviating if 
others don’t.

Within-period ex post also involves 
expectation, but expectation is over 
uncertain type transitions, not current types.
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Mechanism desiderata
• Efficiency:  social-welfare maximizing decisions 

achieved in equilibrium.

• Individual rationality:  no agent expects to 
lose from participating.

Within-period ex post: at every time-step, for every 
joint type.

Ex ante: from beginning of the mechanism, for 
whatever the joint type is then.

• Budget-balance / no-deficit.
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By the way...

• A dynamic analog of the revelation principle 
holds [Myerson, 1986].

• So we can think only about direct 
revelation mechanisms, without loss of 
generality.
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Some solutions so far 
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A basic efficient dynamic 
mechanism

•Dynamic team mechanism          
[Athey & Segal, 07]

Follows efficient policy given agent reports.

In each period, pays each agent the expected 
immediate value obtained by other agents 
given reported types (“Groves payment”).
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Dynamic team mechanism
example
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Dynamic team mechanism
example

optimal policy (γ close to 1): 
* → blue
AJ → red or blue
BJ → red or blue
CK → red
CL → blue
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Dynamic team mechanism
example

• T1(*) = 0,  T2(*) = 0
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Dynamic team mechanism
example

• T1(*) = 0,  T2(*) = 0
• T1(CL) = 100,  T2(CL) = 0
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Dynamic team 
mechanism

Theorem:  The dynamic team mechanism is 
truthful and efficient in within-period ex post 
Nash equilibrium.

[Athey & Segal, 07]
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Dynamic-Groves 
mechanism class

• Follows efficient policy given agent reports; 
defines payments such that:

Each agent’s expected sum of payments when he 
follows strategy σ equals the expected value 
other agents obtain when he follows σ, minus 
some quantity independent of σ.
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Dynamic-Groves 
mechanism class

52

Theorem:  Every dynamic-Groves mechanism is 
truthful and efficient in within-period ex post 
Nash equilibrium.
[Cavallo, Parkes, & Singh, 07]

Proof:  Each agent obtains social utility (aligns 
incentives) minus some constant (doesn’t distort).



Dynamic-Groves: all 
efficient mechanisms

Theorem:  For unrestricted types, the dynamic-
Groves class exactly corresponds to the history-
independent dynamic mechanisms that are 
truthful and efficient in within-period ex post 
Nash equilibrium.      [Cavallo, 08]

For within-period ex post efficient (and history-
independent) dynamic mechanism design, 
dynamic-Groves is the only game in town.
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Dynamic-Groves: all 
efficient mechanisms

Theorem:  For unrestricted types, the dynamic-
Groves class exactly corresponds to the history-
independent dynamic mechanisms that are 
truthful and efficient in within-period ex post 
Nash equilibrium.      [Cavallo, 08]

Generalizes [Green & Laffont, 77] (Groves class 
unique for static settings).

Proof idea:  If non-Groves, there is always some type 
for which incentives are sufficiently distorted from 
efficiency.
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Budget & participation

• Given characterization theorem, if we 
demand efficiency in strongest sense, we 
know what the possibilities are.

• Now pick mechanisms in class with 
desirable budget/participation properties.

basic “team mechanism” won’t fly – 
extreme budget imbalance

need to recover payments...
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Recovering payments: 
ex ante charge (EAC)

Charge agents some quantity computed “ex 
ante” of anything they report.
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Recovering payments: 
ex ante charge (EAC)
• At every time-step:

Choose efficient decision given reported types.

Make Groves payments.

Charge each agent a quantity based only on the reported 
types of other agents in the first time-step: (1-γ) times 
total value other agents would obtain, in expectation from 
beginning of mechanism, if policy optimal for them was 
chosen.

[Cavallo, Parkes, & Singh, 06]

Chapter 5: Dynamic mechanism design 92

The dynamic-basic-Groves mechanism pays each agent the (reported) value ob-
tained by other agents, and it is thus a dynamic-Groves mechanism where the con-
stant C charge functions are null. But we can see that any mechanism that modifies
dynamic-basic-Groves by imposing a charge on each agent at each time period that is
independent of anything that agent has ever reported will also be a dynamic-Groves
mechanism. We can specify the charge for each agent in a way such that, in expecta-
tion from the beginning of the mechanism, a deficit will not result and at the same
time agent payoffs will be non-negative. I will refer to this as the dynamic-EAC (ex
ante charge) mechanism:

Definition 5.12 (dynamic-EAC). The dynamic-EAC mechanism executes de-
cision policy π∗ and, ∀i ∈ I and θt ∈ Θ, transfers:

Ti(θ
t) = r−i(θ

t
−i, π

∗(θt)) − (1 − γ)V−i(θ
0
−i) (5.39)

Theorem 5.4. The dynamic-EAC mechanism is truthful and efficient in within-
period ex post Nash equilibrium, ex ante individual rational, and ex ante no-deficit.

Proof. First observe that for any i ∈ I, θ0 ∈ Θ, and any two strategies σ′
i and

σ′′
i , (1 − γ)V−i(θ0

−i, π
∗
−i, σ

′
i) = (1 − γ)V−i(θ0

−i, π
∗
−i, σ

′′
i ), since V−i(θ0

−i) depends only
on the states of other agents at the beginning of the mechanism, which i cannot
possibly impact. Thus dynamic-EAC is a dynamic-Groves mechanism with Ci(θt) =
(1−γ)V−i(θ0

−i), ∀θt. Therefore, by Theorem 5.3, dynamic-EAC is truthful and efficient
in within-period ex post Nash equilibrium.

The mechanism is also ex ante IR. Consider the truthful reporting strategy profile.
In expectation from the beginning of the mechanism the reward obtained intrinsically
by any agent plus the payment he receives is greater than the charge he must pay:

E

[

K
∑

k=0

γk
(

ri(θ
k
i , π

∗(θk)) + r−i(θ
k
−i, π

∗(θk)) − (1 − γ)V−i(θ
0
−i)

)
∣

∣

∣
θ0, π∗

]

(5.40)

= Vi(θ
0) + V−i(θ

0) − V−i(θ
0
−i) (5.41)

= V (θ0) − V−i(θ
0
−i) (5.42)

≥ 0, (5.43)

where the final inequality holds by optimality of π∗.
Finally, note that in expectation from the beginning of the mechanism, in the

truthful equilibrium the payments made by the mechanism to any agent i equal
V−i(θ0) − V−i(θ0

−i). V−i(θ0
−i) ≥ V−i(θ0) by optimality (for agents other than i) of π∗

−i,
and thus the mechanism is ex ante no-deficit
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Dynamic-EAC mechanism
example

• γ = 0.9
• V1(*-2) = 50 + γ10 = 59
• V2(*-1) = γ90 = 81

• T1(*) = -8.1,  T2(*) = -5.9
• T1(CL) = 100 - 8.1,  T2(CL) = -5.9
• ...
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Recovering payments: 
ex ante charge (EAC)

Theorem:  The dynamic-EAC mechanism is 
truthful and efficient in within-period ex post 
Nash equilibrium, ex ante individual rational, 
and ex ante no-deficit.

[Cavallo, Parkes, & Singh, 06]
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Weak IR and budget-
balance properties

• With dynamic-EAC scheme agents will 
“sign up” at beginning of mechanism, but 
may wish to back out...

• Same for center.

• Can we strengthen?
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Dynamic-VCG
[Bergemann & Valimaki, 08]

• At each time-step, pay each agent i the 
expected value other agents would obtain if i 
were ignored after one step, minus the value 
they’d obtain if i were always ignored.

Each agent has to pay the amount he inhibits 
other agents from obtaining value (now and 
in the future) by his current report.
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Dynamic-VCG
[Bergemann & Valimaki, 08]

• At each time-step, pay each agent i the 
expected value other agents would obtain if i 
were ignored after one step, minus the value 
they’d obtain if i were always ignored.

Chapter 5: Dynamic mechanism design 93

There are a couple additional interesting things to note about this mechanism.
First, the properties (incentives and budget) do not depend at all on when the charge
terms imposed on the agents are executed, as long as they are scaled appropriately
according to the discount factor. For instance, the mechanism could just as well have
been defined to have each agent i pay V−i(θ0

−i) at time 0 with no further charges in
the periods to follow.

Also, if the initial state θ0 is common knowledge (and only the realized state
transitions are private), each i can be charged (1−γ)V−i(θ0) rather than (1−γ)V−i(θ0

−i)
each period; Theorem 5.4 continues to hold, and in fact the expected revenue from the
beginning of the mechanism equals 0, since the expected aggregate value of payments
made to any agent are 0.

5.5 The dynamic-VCG mechanism

The results of the previous section are positive, but leave room for improvement.
In many scenarios the distinction between ex ante individual rationality or no-deficit
and within-period ex post individual rationality or guaranteed no-deficit will be sig-
nificant. The mechanism I present in this chapter strengthens the dynamic-EAC
mechanism in just these ways. Bergemann & Välimäki’s [2006] dynamic-VCG mech-
anism, we will see, is efficient, IC, and IR in within-period ex post Nash equilibrium,
and is also no-deficit. I will demonstrate efficiency and IC, again, by showing that
dynamic-VCG is a dynamic-Groves mechanism and then referring to Theorem 5.3.
The nature of the proof will at the same time demonstrate the IR and no-deficit
properties of the mechanism.

Finally, the revenue a mechanism generates—or, how much of the value from a
sequence of decisions is acquired by the center rather than kept by the agents—is also
an important evaluation metric. Of course in many business settings a mechanism
designer would seek to implement a mechanism in which revenue is high, extracting as
much value as possible; I will show that dynamic-VCG is optimal here (if efficiency is
required). In the next chapter I follow the approach of Chapter 3 and try to minimize
rather than maximize revenue.

Definition 5.13 (dynamic-VCG). [Bergemann and Valimaki, 2006] The
dynamic-VCG mechanism executes policy π∗ and, ∀i ∈ I and θt ∈ Θ, transfers:

Ti(θ
t) = r−i(θ

t
−i, π

∗(θt)) + γE[V−i(τ(θt
−i, π

∗(θt)))] − V−i(θ
t
−i) (5.44)

Recall that V−i(θt
−i) denotes V−i(θt

i, θ
t
−i, π

∗
−i, σi), and thus E[V−i(τ(θt

−i, π
∗(θt)))]

is the expected value that agents other than i would obtain from a policy that is
optimized for them forward from the joint type that results when the socially optimal
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Dynamic-VCG mechanism
example

• γ = 0.9

• T1(*) = γ90 - γ90
• T2(*) = γ30 - (50 + γ10)

• T1(CL) = 100 - 100
• T2(CL) = 0 - 30
• ...
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Dynamic-VCG
[Bergemann & Valimaki, 08]

• No payment to any agent in any period is  
positive.

• Expected future payoff to every agent i, 
from any joint state, at any time t, is:

64
(NB: assumes no negative values)

Chapter 5: Dynamic mechanism design 93

There are a couple additional interesting things to note about this mechanism.
First, the properties (incentives and budget) do not depend at all on when the charge
terms imposed on the agents are executed, as long as they are scaled appropriately
according to the discount factor. For instance, the mechanism could just as well have
been defined to have each agent i pay V−i(θ0

−i) at time 0 with no further charges in
the periods to follow.

Also, if the initial state θ0 is common knowledge (and only the realized state
transitions are private), each i can be charged (1−γ)V−i(θ0) rather than (1−γ)V−i(θ0

−i)
each period; Theorem 5.4 continues to hold, and in fact the expected revenue from the
beginning of the mechanism equals 0, since the expected aggregate value of payments
made to any agent are 0.

5.5 The dynamic-VCG mechanism

The results of the previous section are positive, but leave room for improvement.
In many scenarios the distinction between ex ante individual rationality or no-deficit
and within-period ex post individual rationality or guaranteed no-deficit will be sig-
nificant. The mechanism I present in this chapter strengthens the dynamic-EAC
mechanism in just these ways. Bergemann & Välimäki’s [2006] dynamic-VCG mech-
anism, we will see, is efficient, IC, and IR in within-period ex post Nash equilibrium,
and is also no-deficit. I will demonstrate efficiency and IC, again, by showing that
dynamic-VCG is a dynamic-Groves mechanism and then referring to Theorem 5.3.
The nature of the proof will at the same time demonstrate the IR and no-deficit
properties of the mechanism.

Finally, the revenue a mechanism generates—or, how much of the value from a
sequence of decisions is acquired by the center rather than kept by the agents—is also
an important evaluation metric. Of course in many business settings a mechanism
designer would seek to implement a mechanism in which revenue is high, extracting as
much value as possible; I will show that dynamic-VCG is optimal here (if efficiency is
required). In the next chapter I follow the approach of Chapter 3 and try to minimize
rather than maximize revenue.

Definition 5.13 (dynamic-VCG). [Bergemann and Valimaki, 2006] The
dynamic-VCG mechanism executes policy π∗ and, ∀i ∈ I and θt ∈ Θ, transfers:

Ti(θ
t) = r−i(θ

t
−i, π

∗(θt)) + γE[V−i(τ(θt
−i, π

∗(θt)))] − V−i(θ
t
−i) (5.44)

Recall that V−i(θt
−i) denotes V−i(θt

i, θ
t
−i, π

∗
−i, σi), and thus E[V−i(τ(θt

−i, π
∗(θt)))]

is the expected value that agents other than i would obtain from a policy that is
optimized for them forward from the joint type that results when the socially optimalr−i(θt

−i,π
∗(θt)) + γ [V−i(τ(θt

−i,π
∗(θt)))] ≤ V−i(θt

−i)

V (θt)− V−i(θt
−i) ≥ 0

1

r−i(θt
−i,π

∗(θt)) + γ [V−i(τ(θt
−i,π

∗(θt)))] ≤ V−i(θt
−i)

V (θt)− V−i(θt
−i) ≥ 0

1



Dynamic-VCG
[Bergemann & Valimaki, 08]

Theorem:  The dynamic-VCG mechanism is 
truthful and efficient in within-period ex post 
Nash equilibrium, within-period ex post 
individual rational, and ex post no-deficit.
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Dynamic-VCG:  good social-welfare?
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Dynamic-VCG: 
good social-welfare?

Theorem:  Among all history-independent 
mechanisms that are efficient in within-
period ex post Nash equilibrium and within-
period ex post individual rational, dynamic-
VCG yields the most expected revenue, for 
every joint type.

[Cavallo, 08]
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Dynamic-VCG: 
good social-welfare?

• Since dynamic-VCG can be so bad for the 
agents, what do we do?

• Think back to the static setting... better 
budget balance was achieved by 
redistribution mechanisms; strong budget-
balance by moving to Bayes-Nash 
equilibrium.
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A dynamic redistribution 
mechanism?
• Redistribution much more complicated in 

the dynamic setting. Now redistribution 
payment computed in later time periods 
can potentially be influenced via an agent’s 
reports in earlier periods... in subtle ways.

Focus on worlds representable as multi-
armed bandits.
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Dynamic-VCG for MABs 
reduces to:

• Determine optimal agent i to activate.

i pays (1-γ) times the expected value other 
agents would get if i were always ignored.

Other agents pay nothing.
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Dynamic-VCG for MABs:
• Winner pays (1-γ) times the 

expected value other agents would 
get if he were always ignored.

• Other agents pay nothing.
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Dynamic-RM for MABs
[Cavallo, 08]

• Modify dynamic-VCG by adding the following 
payments to the agents each period:

For agent i receiving item:  (1-γ)/n times the 
expected total discounted revenue that would 
result if i were ignored going forward.

For every other agent j:  1/n times the expected 
immediate revenue that would have resulted this 
period if j were ignored.



Dynamic-RM for MABs
[Cavallo, 08]

Lemma:  Whatever strategy an agent follows, 
his expected redistribution payments over 
time equal: a 1/n share of the expected total 
(over time) revenue that would result if the 
agent were not present.

(This is the hard part to prove. Once we have, it 
follows that dynamic-RM is a dynamic-Groves 
mechanism, and thus efficient.)
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Dynamic-RM for MABs
[Cavallo, 08]

Theorem:  Dynamic-RM is efficient in within-
period ex post Nash equilibrium, within-
period ex post IR, and never runs a deficit.

And yields significantly more value for the 
agents than dynamic-VCG. 

Examples with three or more agents are tough 
to illustrate, so let’s just look at aggregate 
results: 
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Value retained: normal distribution
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Value retained: uniform distribution
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efficiency IR budget-
balance

team 
mechanism w.p. ex post w.p. ex post huge deficit

dynamic-EAC w.p. ex post ex ante ex ante no-deficit

dynamic-VCG w.p. ex post w.p. ex post ex post no-deficit

dynamic-RM
(only for MABs)

w.p. ex post w.p. ex post ex post no-deficit,
much closer to perfect BB

balanced-
mechanism

Bayes-Nash ex ante perfect



(Balanced team mechanism 
presented by Susan Athey)
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Extensions

84



Dynamically changing 
populations of agents

• What’s new:  agents may – either 
temporarily or permanently – become 
“inaccessible”, i.e., unable to communicate 
with the center or make/receive payments.

• Generalizes arrival/departure dynamics.
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For instance:

• Imagine selling theater tickets to tourists 
who plan to see multiple shows over a 
period of days.

New tourists always arriving, others 
leaving (dynamic population).

A tourist may see a show, realize she likes 
the theater more/less (dynamic types).
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Related area:
online mechanism design
• Dynamic population (arrivals and departures), 

but static types – all private information an 
agent will ever obtain can be reported in 
arrival period. 

[Friedman & Parkes, 03]

[Parkes & Singh, 03]

[Lavi & Nisan, 04]

[Porter, 04]
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Online-VCG mechanism
[Parkes & Singh, 03]

• Collects a single payment from each agent 
in her “arrival period”.

Within-period ex post efficient.

Ex post individual rational

Ex post no-deficit.
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Online-VCG mechanism
[Parkes & Singh, 03]

• Collects a single payment from each agent 
in her “arrival period”.

Within-period ex post efficient.

Ex post individual rational

Ex post no-deficit.
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But only for static types.



Dynamic populations, 
dynamic types
[Cavallo, Parkes, & Singh, 07]

• Unifies dynamic mechanism design and 
online mechanism design.

• The new challenges:

Optimal policy must consider accessibility/
inaccessibility dynamics

Agents may not be available for payment while 
still exerting influence on welfare of other agents.
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Figure 1: Two-agent, 3 time-step problem with a single item to allocate. Initial joint
state is AD. Decisions ({allocate to 1, allocate to 2, don’t allocate}) are implicit in the
state transitions. Agent 1’s type has deterministic transitions, while agent 2’s type has
non-determinism only in the first period.

or not an agent transitions to an inaccessible state can also depend on both the
action taken and the agent’s current type.

This model of periodic inaccessibility applies, for instance, to environments in which
an agent might periodically lose contact with the center due to faulty or limited com-
munication, or because of bounded attention where an agent needs to periodically
attend to other decisions or apply full attention to utilizing a resource just assigned
by the center. We will see that it also generalizes earlier arrival-departure models
of online mechanism design, in which an agent is inaccessible and then accessible
and then inaccessible again.

Efficiency is constrained by the new communication constraints, which preclude a
social planner from knowing the private type of an agent while an agent is inacces-
sible. Moreover, inaccessible agents have no opportunity to misreport their type to
the center, and therefore incentive-compatibility requirements will also be modified
so that they need hold only while an agent is accessible.

To gain some intuition, we can consider a simple mechanism in which the decision
policy is defined in a way that simply ignores inaccessible agents, and selects the
action in each period that is efficient as though the population consists of only
accessible agents. In addition, suppose the mechanism makes a payment to each
accessible agents in every period that is equal to the (reported) value obtained by
the other accessible agents in the period. The following example shows that such a
simple mechanism is not incentive-compatible for this environment.

Example 2. Consider again the problem in Figure 1, but now extended with the
following periodic-inaccessibility dynamics: with very high probability agent 1 is

16
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• Imagine agent 1 accessible at t = 1, and agent 
2 inaccessible at t = 1 but very likely to 
become accessible at t = 2.
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• Imagine agent 1 accessible at t = 1, and agent 
2 inaccessible at t = 1 but very likely to 
become accessible at t = 2.

• In “naive” dynamic-VCG mechanism, agent 1 
better off “hiding” to improve social-welfare.
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• Imagine agent 1 accessible at t = 1, and agent 
2 inaccessible at t = 1 but very likely to 
become accessible at t = 2.

• In “naive” dynamic-VCG mechanism, agent 1 
better off “hiding” to improve social-welfare.

• In non-naive mechanism that makes 
dynamic-VCG payments only to accessible 
agents, agent 2 can benefit by hiding.
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accessible agents. In addition, suppose the mechanism makes a payment to each
accessible agents in every period that is equal to the (reported) value obtained by
the other accessible agents in the period. The following example shows that such a
simple mechanism is not incentive-compatible for this environment.

Example 2. Consider again the problem in Figure 1, but now extended with the
following periodic-inaccessibility dynamics: with very high probability agent 1 is
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A fix

• For any inaccessible agent, keep log of 
payments dynamic-VCG would impose on 
agent; when the agent becomes accessible, 
execute “lump sum” payment, appropriately 
scaled for discounting.

• Requires that all agents eventually “come 
back”.
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Imagine both agents accessible in 
all periods. Should agent 2 feign 
inaccessibility until t = 2?
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or not an agent transitions to an inaccessible state can also depend on both the
action taken and the agent’s current type.

This model of periodic inaccessibility applies, for instance, to environments in which
an agent might periodically lose contact with the center due to faulty or limited com-
munication, or because of bounded attention where an agent needs to periodically
attend to other decisions or apply full attention to utilizing a resource just assigned
by the center. We will see that it also generalizes earlier arrival-departure models
of online mechanism design, in which an agent is inaccessible and then accessible
and then inaccessible again.

Efficiency is constrained by the new communication constraints, which preclude a
social planner from knowing the private type of an agent while an agent is inacces-
sible. Moreover, inaccessible agents have no opportunity to misreport their type to
the center, and therefore incentive-compatibility requirements will also be modified
so that they need hold only while an agent is accessible.

To gain some intuition, we can consider a simple mechanism in which the decision
policy is defined in a way that simply ignores inaccessible agents, and selects the
action in each period that is efficient as though the population consists of only
accessible agents. In addition, suppose the mechanism makes a payment to each
accessible agents in every period that is equal to the (reported) value obtained by
the other accessible agents in the period. The following example shows that such a
simple mechanism is not incentive-compatible for this environment.

Example 2. Consider again the problem in Figure 1, but now extended with the
following periodic-inaccessibility dynamics: with very high probability agent 1 is
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T2 = -6 - 2 = -8,  same whether he hides at t = 1 or not.
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T2 = -6 - 2 = -8,  same whether he hides at t = 1 or not.

difference in optimal value 
for agent 1, with and without 

agent 2 present at t=1

difference in optimal value 
for agent 1, with and without 

agent 2 present at t=2
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What if agents don’t 
always come back?

• In general, the scheme won’t work.

• For an arrival/departure model, within-
period ex post efficiency is recovered if 
agent arrivals are independent conditioned 
on actions chosen.
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Randomly arriving agents, 
revenue maximization
[Gershkov and Moldovanu, 09]

• Goal is not efficiency, but rather revenue 
maximization.

• Agents arrive randomly over time.

• Set of resources to be allocated before a 
deadline.
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Computation
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The big bad secret

• Computing optimal policies is, in general,  
very hard... but often necessary.

• What can we do?

Approximations, yielding approximate 
equilibria (even this is hard)?

Identify tractable special cases.

Thankfully, MABs are such a case.

96



Computing optimal policies 
in MABs  [Gittins & Jones, 74]

• At each period, compute Gittins index for each 
agent’s Markov chain.

• “Activate” (e.g., allocate resource to) agent 
with highest index.

Complexity:  Gittins indices are independent, 
so linear in number of agents.
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Beyond simple 
repeated allocation

Coordination of value information 
acquisition preceding one-time allocation of 
a single item (“metadeliberation auctions”).
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Metadeliberation auction
[Cavallo & Parkes, 08]

• A resource is to be allocated. Agents have 
initial valuations for the resource. Valuations 
can potentially be increased by costly 
“deliberation” (e.g., researching new ways 
of using the resource).

• How to coordinate deliberation/allocation 
to maximize social welfare?
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Metadeliberation auction
[Cavallo & Parkes, 08]

• Given optimal policy, dynamic-VCG mechanism 
can be applied to deal with incentives.

• Computing optimal deliberation/allocation 
policy is tractable (reduction to multi-armed 
bandits problem).

• Note: even in this one-time allocation 
scenario, a realistic analysis of the problem 
reveals the need for dynamic solution.
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Computation
Beyond bandits:

heuristics for special cases
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Self-correcting dynamic 
multi-unit auctions
[Constantin & Parkes, here]

• When computing optimal policy is 
infeasible...

• Propose heuristic method that is 
strategyproof, yet achieves social-welfare 
~90% of optimal.

• See talk tomorrow for details.
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Auctions with online supply
[Babaioff, Blumrosen, & Roth, workshop here]

• Dynamically arriving items – unknown total 
quantity.

• Approximate mechanisms.

• Nonetheless truthful – possible due to the 
restricted setting.
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Open problems, 
future directions
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Interdependent values

• Interestingly, sequential nature of problem 
kind of helps here: ex post payments 
become natural.

Version of the team mechanism is still within-
period ex post efficient.

But no apparent way to extend dynamic-VCG...

Can we achieve no-deficit, IR, and efficienct in 
interdependent settings?
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Computation

• The general case looks hopeless.

• Continue to identify tractable special cases?

• Adopt more realistic equilibrium notions?
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