Dynamic Mechanism Design Tutorial

Susan Athey

July 7, 2009
Static “expected externality” (AGV) mechanism is not IC - does not prevent contingent deviations
Static “expected externality” (AGV) mechanism is not IC - does not prevent contingent deviations

Athey-Segal constructs a dynamic mechanism that
- Static “expected externality” (AGV) mechanism is not IC - does not prevent contingent deviations
- Athey-Segal constructs a dynamic mechanism that
 - Implements efficient decisions
Static “expected externality” (AGV) mechanism is not IC - does not prevent contingent deviations

Athey-Segal constructs a dynamic mechanism that

- Implements efficient decisions
- Has a balanced budget
Static “expected externality” (AGV) mechanism is not IC - does not prevent contingent deviations

Athey-Segal constructs a dynamic mechanism that
- Implements efficient decisions
- Has a balanced budget
- IC – prevents contingent deviations
Static “expected externality” (AGV) mechanism is not IC - does not prevent contingent deviations

Athey-Segal constructs a dynamic mechanism that
- Implements efficient decisions
- Has a balanced budget
- IC – prevents contingent deviations

Dynamic Games without Enforcement/Commitment
Static “expected externality” (AGV) mechanism is not IC - does not prevent contingent deviations

Athey-Segal constructs a dynamic mechanism that
- Implements efficient decisions
- Has a balanced budget
- IC – prevents contingent deviations

Dynamic Games without Enforcement/Commitment
- Athey-Segal: IR constraints can be satisfied in an ergodic Markov model with patient agents
Static “expected externality” (AGV) mechanism is not IC - does not prevent contingent deviations

Athey-Segal constructs a dynamic mechanism that
- Implements efficient decisions
- Has a balanced budget
- IC – prevents contingent deviations

Dynamic Games without Enforcement/Commitment
- Athey-Segal: IR constraints can be satisfied in an ergodic Markov model with patient agents
 - Model: incorporate an “exit option” that can be taken in each period
Static “expected externality” (AGV) mechanism is not IC - does not prevent contingent deviations

Athey-Segal constructs a dynamic mechanism that

- Implements efficient decisions
- Has a balanced budget
- IC – prevents contingent deviations

Dynamic Games without Enforcement/Commitment

Athey-Segal: IR constraints can be satisfied in an ergodic Markov model with patient agents

- Model: incorporate an “exit option” that can be taken in each period
- In this case the mechanism can be self-enforcing
Static “expected externality” (AGV) mechanism is not IC - does not prevent contingent deviations

Athey-Segal constructs a dynamic mechanism that

- Implements efficient decisions
- Has a balanced budget
- IC – prevents contingent deviations

Dynamic Games without Enforcement/Commitment

- Athey-Segal: IR constraints can be satisfied in an ergodic Markov model with patient agents
 - Model: incorporate an “exit option” that can be taken in each period
 - In this case the mechanism can be self-enforcing

Recursive Mechanisms with Transfers
Static “expected externality” (AGV) mechanism is not IC - does not prevent contingent deviations

Athey-Segal constructs a dynamic mechanism that

- Implements efficient decisions
- Has a balanced budget
- IC – prevents contingent deviations

Dynamic Games without Enforcement/Commitment

Athey-Segal: IR constraints can be satisfied in an ergodic Markov model with patient agents

- Model: incorporate an “exit option” that can be taken in each period
- In this case the mechanism can be self-enforcing

Recursive Mechanisms with Transfers

Dynamic Games without Enforcement and without Transfers
A Simple Example

1a. Seller learns θ_S
1b. Buyer buys x_1 from Seller
2a. Buyer learns θ_B
2b. Buyer buys x_2 from Seller

- Buyer’s total value: $x_1 + \theta_B x_2$
A Simple Example

1a. Seller learns θ_S
1b. Buyer buys x_1 from Seller
2a. Buyer learns θ_B
2b. Buyer buys x_2 from Seller

- Buyer’s total value: $x_1 + \theta_B x_2$
- Seller’s cost $c(x_t, \theta_S) = \frac{1}{2} x_t^2 / \theta_S$ in each period $t = 1, 2$.
A Simple Example

1a. Seller learns θ_S
1b. Buyer buys x_1 from Seller
2a. Buyer learns θ_B
2b. Buyer buys x_2 from Seller

- Buyer’s total value: $x_1 + \theta_B x_2$
- Seller’s cost $c(x_t, \theta_S) = \frac{1}{2} x_t^2 / \theta_S$ in each period $t = 1, 2$.
- Efficient plan: $\chi_1(\theta_S) = \theta_S$, $\chi_2(\theta_S, \theta_B) = \theta_S \theta_B$
A Simple Example

1a. Seller learns θ_S
1b. Buyer buys x_1 from Seller
2a. Buyer learns θ_B
2b. Buyer buys x_2 from Seller

- Buyer’s total value: $x_1 + \theta_B x_2$
- Seller’s cost $c(x_t, \theta_S) = \frac{1}{2} x_t^2 / \theta_S$ in each period $t = 1, 2$.
- Efficient plan: $\chi_1(\theta_S) = \theta_S$, $\chi_2(\theta_S, \theta_B) = \theta_S \theta_B$
 - Note: B infers θ_S from $\chi_1(\theta_S)$
A Simple Example

1a. Seller learns θ_S
1b. Buyer buys x_1 from Seller
2a. Buyer learns θ_B
2b. Buyer buys x_2 from Seller

- Buyer’s total value: $x_1 + \theta_B x_2$
- Seller’s cost $c(x_t, \theta_S) = \frac{1}{2} x_t^2 / \theta_S$ in each period $t = 1, 2$.
- Efficient plan: $\chi_1(\theta_S) = \theta_S$, $\chi_2(\theta_S, \theta_B) = \theta_S \theta_B$
 - Note: B infers θ_S from $\chi_1(\theta_S)$

- Team Transfers (not BB):
 \[
 \gamma_S(\hat{\theta}_B, \hat{\theta}_S) = \chi_1(\hat{\theta}_S) + \hat{\theta}_B \cdot \chi_2(\hat{\theta}_S, \hat{\theta}_B),
 \gamma_B(\hat{\theta}_B, \hat{\theta}_S) = -c(\chi_2(\hat{\theta}_S, \hat{\theta}_B), \hat{\theta}_S).
 \]
A Simple Example

1a. Seller learns θ_S

1b. Buyer buys x_1 from Seller

2a. Buyer learns θ_B

2b. Buyer buys x_2 from Seller

- Buyer’s total value: $x_1 + \theta_B x_2$
- Seller’s cost $c(x_t, \theta_S) = \frac{1}{2} x_t^2 / \theta_S$ in each period $t = 1, 2$.
- Efficient plan: $\chi_1(\theta_S) = \theta_S, \chi_2(\theta_S, \theta_B) = \theta_S \theta_B$
 - Note: B infers θ_S from $\chi_1(\theta_S)$
A Simple Example

1a. Seller learns θ_S
1b. Buyer buys x_1 from Seller
2a. Buyer learns θ_B
2b. Buyer buys x_2 from Seller

- Buyer’s total value: $x_1 + \theta_B x_2$
- Seller’s cost $c(x_t, \theta_S) = \frac{1}{2}x_t^2 / \theta_S$ in each period $t = 1, 2$.
- Efficient plan: $\chi_1(\theta_S) = \theta_S, \chi_2(\theta_S, \theta_B) = \theta_S \theta_B$
 - Note: B infers θ_S from $\chi_1(\theta_S)$
- Static AGV (“Expected Externality”)—note beliefs are CK:

 $\gamma_S(\hat{\theta}_S) = \chi_1(\hat{\theta}_S) + \mathbb{E}_{\tilde{\theta}_B} [\tilde{\theta}_B \cdot \chi_2 (\hat{\theta}_S, \tilde{\theta}_B)]$,

 $\gamma_B (\hat{\theta}_B) = -\mathbb{E}_{\tilde{\theta}_S} [c (\chi_2(\tilde{\theta}_S, \hat{\theta}_B), \tilde{\theta}_S)]$.
A Simple Example

1a. Seller learns θ_S
1b. Buyer buys x_1 from Seller
2a. Buyer learns θ_B
2b. Buyer buys x_2 from Seller

- Buyer’s total value: $x_1 + \theta_B x_2$
- Seller’s cost $c(x_t, \theta_S) = \frac{1}{2} x_t^2 / \theta_S$ in each period $t = 1, 2$.
- Efficient plan: $\chi_1(\theta_S) = \theta_S, \chi_2(\theta_S, \theta_B) = \theta_S \theta_B$

 - Note: B infers θ_S from $\chi_1(\theta_S)$

- Static AGV (“Expected Externality”)—note beliefs are CK:

 \[
 \gamma_S(\hat{\theta}_S) = \chi_1(\hat{\theta}_S) + \mathbb{E}_{\tilde{\theta}_B} [\tilde{\theta}_B \cdot \chi_2 (\tilde{\theta}_S, \tilde{\theta}_B)],
 \]

 \[
 \gamma_B (\hat{\theta}_B) = -\mathbb{E}_{\tilde{\theta}_S} [c (\chi_2(\tilde{\theta}_S, \tilde{\theta}_B), \tilde{\theta}_S)].
 \]

- Total payment from B to S:

 \[
 \psi_S(\theta_B, \theta_S) = -\psi_B(\theta_B, \theta_S) = \gamma_S(\theta_S) - \gamma_B(\theta_B)
 \]
Instead of E_{θ_S}, calculate γ_B using S’s reported $\hat{\theta}_S$:

$$\gamma_B (\hat{\theta}_S, \hat{\theta}_B) = -c \left(\chi_2(\hat{\theta}_S, \hat{\theta}_B), \hat{\theta}_S \right)$$
Instead of E_{θ_S}, calculate γ_B using S’s reported $\hat{\theta}_S$:

$$\gamma_B (\hat{\theta}_S, \hat{\theta}_B) = -c (\chi_2(\hat{\theta}_S, \hat{\theta}_B), \hat{\theta}_S)$$

But then S, who pays γ_B, would lie to manipulate it!
Instead of \mathbb{E}_{θ_S}, calculate γ_B using S’s reported $\hat{\theta}_S$:

$$\gamma_B (\hat{\theta}_S, \hat{\theta}_B) = -c \left(\chi_2 (\hat{\theta}_S, \hat{\theta}_B), \hat{\theta}_S \right)$$

But then S, who pays γ_B, would lie to manipulate it!

Let B’s $\gamma_B = \text{change}$ in S’s expected [CP] cost induced by B’s report:

$$\gamma_B (\hat{\theta}_S, \hat{\theta}_B) = -c \left(\chi_2 (\hat{\theta}_S, \hat{\theta}_B), \hat{\theta}_S \right) + \mathbb{E}_{\tilde{\theta}_B} \left[c \left(\chi_2 (\hat{\theta}_S, \tilde{\theta}_B), \hat{\theta}_S \right) \right]$$
Instead of \(\mathbb{E}_{\theta_S} \), calculate \(\gamma_B \) using S’s reported \(\hat{\theta}_S \):

\[
\gamma_B (\hat{\theta}_S, \hat{\theta}_B) = -c \left(\chi_2(\hat{\theta}_S, \hat{\theta}_B), \hat{\theta}_S \right)
\]

But then S, who pays \(\gamma_B \), would lie to manipulate it!

Let B’s \(\gamma_B = \text{change} \) in S’s expected [CP] cost induced by B’s report:

\[
\gamma_B (\hat{\theta}_S, \hat{\theta}_B) = -c \left(\chi_2(\hat{\theta}_S, \hat{\theta}_B), \hat{\theta}_S \right) + \mathbb{E}_{\tilde{\theta}_B} \left[c \left(\chi_2(\hat{\theta}_S, \tilde{\theta}_B), \hat{\theta}_S \right) \right].
\]

\(\gamma_B \) lets B internalize S’s cost \(\Rightarrow \) B will not lie regardless of what \(\theta_S \) he infers
Building an IC Dynamic Mechanism

- Instead of \mathbb{E}_{θ_S}, calculate γ_B using S’s reported $\hat{\theta}_S$:

$$
\gamma_B (\hat{\theta}_S, \hat{\theta}_B) = -c (\chi_2(\hat{\theta}_S, \hat{\theta}_B), \hat{\theta}_S)
$$

- But then S, who pays γ_B, would lie to manipulate it!

- Let B’s $\gamma_B = \text{change}$ in S’s expected [CP] cost induced by B’s report:

$$
\gamma_B (\hat{\theta}_S, \hat{\theta}_B) = -c (\chi_2(\hat{\theta}_S, \hat{\theta}_B), \hat{\theta}_S) + \mathbb{E}_{\tilde{\theta}_B} [c (\chi_2(\hat{\theta}_S, \tilde{\theta}_B), \hat{\theta}_S)].
$$

- γ_B lets B internalize S’s cost \Rightarrow B will not lie regardless of what θ_S he infers

- $\mathbb{E}_{\tilde{\theta}_B} \gamma_B (\tilde{\theta}_B, \theta_S) \equiv 0 \Rightarrow$ having S pay γ_B does not alter S’s incentives if B is truthful
Building an IC Dynamic Mechanism

- Instead of E_{θ_S}, calculate γ_B using S’s reported $\hat{\theta}_S$:
 \[
 \gamma_B (\hat{\theta}_S, \hat{\theta}_B) = -c \left(\chi_2(\hat{\theta}_S, \hat{\theta}_B), \hat{\theta}_S \right)
 \]

- But then S, who pays γ_B, would lie to manipulate it!

- Let B’s $\gamma_B = \text{change in S’s expected [CP] cost induced by B’s report}$:
 \[
 \gamma_B (\hat{\theta}_S, \hat{\theta}_B) = -c \left(\chi_2(\hat{\theta}_S, \hat{\theta}_B), \hat{\theta}_S \right) + E_{\tilde{\theta}_B} \left[c \left(\chi_2(\hat{\theta}_S, \tilde{\theta}_B), \hat{\theta}_S \right) \right].
 \]

- γ_B lets B internalize S’s cost \Rightarrow B will not lie regardless of what θ_S he infers

- $E_{\tilde{\theta}_B} \gamma_B(\tilde{\theta}_B, \theta_S) \equiv 0 \Rightarrow$ having S pay γ_B does not alter S’s incentives if B is truthful

- Thus letting $\psi_S(\theta_B, \theta_S) = -\psi_B(\theta_B, \theta_S) = \gamma_S(\theta_S) - \gamma_B(\theta_B, \theta_S)$ yields a BIC balanced-budget mechanism
Generalizing Example: Add Another Period of Trade

- Seller type constant across repetitions, buyer type serially correlated
 1a. Seller learns θ_S
 1b. Buyer buys x_1 from Seller
 2a. Buyer learns $\theta_{B,2}$
 2b. Buyer buys x_2 from Seller
 3a. Buyer learns $\theta_{B,3}$
 3b. Buyer buys x_3 from Seller

\[\text{Pay buyer } \gamma_B = \text{change in } S' \text{'s expected cost induced by } B' \text{'s report in each repetition. Implies } \gamma_B \text{ incentive payment to buyer is:} \]

\[\gamma_B, 3 = \hat{\theta}_S, \hat{\theta}_B, 3, \hat{\theta}_B, 2 \]

In period 2, buyer sees add' l effect of reporting $\hat{\theta}_B, 2$: affects beliefs

"Correction term" was there to neutralize seller' s incentive to manipulate $\gamma_B, 3$ through report of $\hat{\theta}_S$

But in period 2, this correction distorts buyer' s incentives
Generalizing Example: Add Another Period of Trade

- Seller type constant across repetitions, buyer type serially correlated
 1a. Seller learns θ_S
 1b. Buyer buys x_1 from Seller
 2a. Buyer learns $\theta_{B,2}$
 2b. Buyer buys x_2 from Seller
 3a. Buyer learns $\theta_{B,3}$
 3b. Buyer buys x_3 from Seller

- Pay buyer $\gamma_B = \text{change}$ in S’s expected cost induced by B’s report in each repetition. Implies $t = 3$ incentive payment to buyer is:

$$\gamma_{B,3} (\hat{\theta}_S, \hat{\theta}_{B,3}, \hat{\theta}_{B,2}) = -c \left(\chi_3(\hat{\theta}_S, \hat{\theta}_{B,3}, \hat{\theta}_S) \right) + \mathbb{E}_{\tilde{\theta}_{B,3}} \left[c \left(\chi_1(\hat{\theta}_S, \tilde{\theta}_{B,3}, \hat{\theta}_S) \right) \bigg| \hat{\theta}_{B,2} \right].$$
Generalizing Example: Add Another Period of Trade

- Seller type constant across repetitions, buyer type serially correlated
 1a. Seller learns θ_S
 1b. Buyer buys x_1 from Seller
 2a. Buyer learns $\theta_{B,2}$
 2b. Buyer buys x_2 from Seller
 3a. Buyer learns $\theta_{B,3}$
 3b. Buyer buys x_3 from Seller

- Pay buyer $\gamma_B = \text{change}$ in S’s expected cost induced by B’s report in each repetition. Implies $t = 3$ incentive payment to buyer is:

 $$
 \gamma_{B,3} (\hat{\theta}_S, \hat{\theta}_{B,3}, \hat{\theta}_{B,2}) = -c \left(\chi_3 (\hat{\theta}_S, \hat{\theta}_{B,3}, \hat{\theta}_S) \right) \\
 + \mathbb{E}_{\tilde{\theta}_{B,3}} \left[c \left(\chi_1 (\hat{\theta}_S, \tilde{\theta}_{B,3}, \hat{\theta}_S) \right) \big| \hat{\theta}_{B,2} \right].
 $$

- In $t = 2$, buyer sees add’l effect of reporting $\hat{\theta}_{B,2}$: affects beliefs
Generalizing Example: Add Another Period of Trade

- Seller type constant across repetitions, buyer type serially correlated
 1a. Seller learns θ_S
 1b. Buyer buys x_1 from Seller
 2a. Buyer learns $\theta_{B,2}$
 2b. Buyer buys x_2 from Seller
 3a. Buyer learns $\theta_{B,3}$
 3b. Buyer buys x_3 from Seller

- Pay buyer $\gamma_B = \text{change}$ in S’s expected cost induced by B’s report in each repetition. Implies $t = 3$ incentive payment to buyer is:
 $$
 \gamma_{B,3} (\hat{\theta}_S, \hat{\theta}_{B,3}, \hat{\theta}_{B,2}) = -c \left(\chi_3 (\hat{\theta}_S, \hat{\theta}_{B,3}, \hat{\theta}_S) \right) + \mathbb{E}_{\tilde{\theta}_{B,3}} \left[c \left(\chi_1 (\hat{\theta}_S, \tilde{\theta}_{B,3}, \hat{\theta}_S) \big| \hat{\theta}_{B,2} \right) \right].
 $$

- In $t = 2$, buyer sees add’l effect of reporting $\hat{\theta}_{B,2}$: affects beliefs
- “Correction term” was there to neutralize seller’s incentive to manipulate $\gamma_{B,3}$ through report of $\hat{\theta}_S$
Generalizing Example: Add Another Period of Trade

- Seller type constant across repetitions, buyer type serially correlated
 1a. Seller learns θ_S
 1b. Buyer buys x_1 from Seller
 2a. Buyer learns $\theta_{B,2}$
 2b. Buyer buys x_2 from Seller
 3a. Buyer learns $\theta_{B,3}$
 3b. Buyer buys x_3 from Seller

Pay buyer $\gamma_B = \text{change}$ in S’s expected cost induced by B’s report in each repetition. Implies $t = 3$ incentive payment to buyer is:

$$
\gamma_{B,3} (\hat{\theta}_S, \hat{\theta}_{B,3}, \hat{\theta}_{B,2}) = -c(\chi_3(\hat{\theta}_S, \hat{\theta}_{B,3}), \hat{\theta}_S) \\
+ \mathbb{E}_{\tilde{\theta}_{B,3}} [c(\chi_1(\hat{\theta}_S, \tilde{\theta}_{B,3}), \hat{\theta}_S) | \hat{\theta}_{B,2}].
$$

- In $t = 2$, buyer sees add’l effect of reporting $\hat{\theta}_{B,2}$: affects beliefs
- “Correction term” was there to neutralize seller’s incentive to manipulate $\gamma_{B,3}$ through report of $\hat{\theta}_S$
- But in period 2, this correction distorts buyer’s incentives
The Model

- In each period $t = 1, 2, \ldots$
The Model

- In each period $t = 1, 2, \ldots$
 - Each agent $i = 1, \ldots, N$ privately observes signal $\theta_{i,t} \in \Theta_{i,t}$
The Model

- In each period $t = 1, 2, \ldots$
 1. Each agent $i = 1, \ldots, N$ privately observes signal $\theta_{i,t} \in \Theta_{i,t}$
 2. Agents send simultaneous reports

Technology:

Preferences: Agent i's utility $\delta < \delta < 1$ uniformly bounded
The Model

- In each period $t = 1, 2, \ldots$
 1. Each agent $i = 1, \ldots, N$ privately observes signal $\theta_{i,t} \in \Theta_{i,t}$
 2. Agents send simultaneous reports
 3. Each agent i makes private decision $x_{i,t} \in X_{i,t}$
The Model

- In each period $t = 1, 2, \ldots$
 1. Each agent $i = 1, \ldots, N$ privately observes signal $\theta_{i,t} \in \Theta_{i,t}$
 2. Agents send simultaneous reports
 3. Each agent i makes private decision $x_{i,t} \in X_{i,t}$
 4. Mechanism makes public decision $x_{0,t} \in X_{0,t}$, transfers $y_{i,t} \in \mathbb{R}$ to each i
The Model

- In each period $t = 1, 2, \ldots$
 1. Each agent $i = 1, \ldots, N$ privately observes signal $\theta_{i,t} \in \Theta_{i,t}$
 2. Agents send simultaneous reports
 3. Each agent i makes private decision $x_{i,t} \in X_{i,t}$
 4. Mechanism makes public decision $x_{0,t} \in X_{0,t}$, transfers $y_{i,t} \in \mathbb{R}$ to each i

- Histories: $\theta^t = (\theta_1, \ldots, \theta_t) \in \Theta^t = \prod_{\tau=1}^{t} \prod_{i} \Theta_{i,t}$; similarly $x^t \in X^t$
The Model

- In each period $t = 1, 2, \ldots$
 1. Each agent $i = 1, \ldots, N$ privately observes signal $\theta_{i,t} \in \Theta_{i,t}$
 2. Agents send simultaneous reports
 3. Each agent i makes private decision $x_{i,t} \in X_{i,t}$
 4. Mechanism makes public decision $x_{0,t} \in X_{0,t}$, transfers $y_{i,t} \in \mathbb{R}$ to each i

- Histories: $\theta^t = (\theta_1, \ldots, \theta_t) \in \Theta^t = \prod_{\tau=1}^{t} \prod_i \Theta_{i,t}$; similarly $x^t \in X^t$

- Technology: $\theta_t \sim \nu_t (\cdot | x^{t-1}, \theta^{t-1})$
The Model

- In each period $t = 1, 2, \ldots$
 1. Each agent $i = 1, \ldots, N$ privately observes signal $\theta_{i,t} \in \Theta_{i,t}$
 2. Agents send simultaneous reports
 3. Each agent i makes private decision $x_{i,t} \in X_{i,t}$
 4. Mechanism makes public decision $x_{0,t} \in X_{0,t}$, transfers $y_{i,t} \in \mathbb{R}$ to each i

- Histories: $\theta^t = (\theta_1, \ldots, \theta_t) \in \Theta^t = \prod_{\tau=1}^{t} \prod_{i} \Theta_{i,t}$; similarly $x^t \in X^t$

- Technology: $\theta_t \sim \nu_t (\cdot | x^{t-1}, \theta^{t-1})$

- Preferences: Agent i's utility

\[
\sum_{t=1}^{\infty} \delta^t \left[u_{i,t}(x^t, \theta^t) + y_{i,t} \right]
\]
The Model

- In each period $t = 1, 2, \ldots$
 1. Each agent $i = 1, \ldots, N$ privately observes signal $\theta_{i,t} \in \Theta_{i,t}$
 2. Agents send simultaneous reports
 3. Each agent i makes private decision $x_{i,t} \in X_{i,t}$
 4. Mechanism makes public decision $x_{0,t} \in X_{0,t}$, transfers $y_{i,t} \in \mathbb{R}$ to each i

- Histories: $\theta^t = (\theta_1, \ldots, \theta_t) \in \Theta^t = \prod_{\tau=1}^{t} \prod_i \Theta_{i,t}$; similarly $x^t \in X^t$

- Technology: $\theta_t \sim \nu_t (\cdot | x^{t-1}, \theta^{t-1})$

- Preferences: Agent i’s utility

$$\sum_{t=1}^{\infty} \delta^t \left[u_{i,t}(x^t, \theta^t) + y_{i,t} \right]$$

- $0 < \delta < 1$
The Model

- In each period \(t = 1, 2, \ldots \)
 1. Each agent \(i = 1, \ldots, N \) privately observes signal \(\theta_{i,t} \in \Theta_{i,t} \)
 2. Agents send simultaneous reports
 3. Each agent \(i \) makes private decision \(x_{i,t} \in X_{i,t} \)
 4. Mechanism makes public decision \(x_{0,t} \in X_{0,t} \) transfers \(y_{i,t} \in \mathbb{R} \) to each \(i \)

- Histories: \(\theta^t = (\theta_1, \ldots, \theta_t) \in \Theta^t = \prod_{\tau=1}^{t} \prod_{i} \Theta_{i,t} \); similarly \(x^t \in X^t \)

- Technology: \(\theta_t \sim \nu_t (\cdot | x^{t-1}, \theta^{t-1}) \)

- Preferences: Agent \(i \)'s utility

\[
\sum_{t=1}^{\infty} \delta^t \left[u_{i,t}(x^t, \theta^t) + y_{i,t} \right]
\]

- \(0 < \delta < 1 \)
- \(u_{i,t} \) uniformly bounded
Measurable decision plan: \(\chi_t : \Theta^t \rightarrow X_t \)
Direct Mechanisms

- Measurable decision plan: $\chi_t : \Theta^t \rightarrow X_t$
 - $\chi_{0,t}$ are prescribed public decisions

Information Disclosure: All announcements are public.

Disclosing less would preserve equilibrium as long as agents can still infer recommended private decisions.
Measurable decision plan: $\chi_t : \Theta^t \rightarrow X_t$

- $\chi_{0,t}$ are prescribed public decisions
- $\chi_{i,t}$ are recommended private decisions for agent $i \geq 1$
Direct Mechanisms

- Measurable decision plan: $\chi_t : \Theta^t \rightarrow X_t$
 - $\chi_{0,t}$ are prescribed public decisions
 - $\chi_{i,t}$ are recommended private decisions for agent $i \geq 1$
- Decision plan induces stochastic process $\mu[\chi]$ on Θ
Direct Mechanisms

- Measurable decision plan: $\chi_t : \Theta^t \to X_t$
 - $\chi_{0,t}$ are prescribed public decisions
 - $\chi_{i,t}$ are recommended private decisions for agent $i \geq 1$

- Decision plan induces stochastic process $\mu[\chi]$ on Θ

- Transfers: $\psi_{i,t} : \Theta^t \to \mathbb{R}$; PDV $\Psi_i(\theta) = \sum_{t=0}^{\infty} \delta^t \psi_{i,t}(\theta^t)$
Direct Mechanisms

- Measurable decision plan: $\chi_t : \Theta^t \rightarrow \chi_t$
 - $\chi_{0,t}$ are prescribed public decisions
 - $\chi_{i,t}$ are recommended private decisions for agent $i \geq 1$
- Decision plan induces stochastic process $\mu[\chi]$ on Θ
- Transfers: $\psi_{i,t} : \Theta^t \rightarrow \mathbb{R}$; PDV $\Psi_i(\theta) = \sum_{t=0}^{\infty} \delta^t \psi_{i,t}(\theta^t)$
 - Measurable, uniformly bounded
Direct Mechanisms

- Measurable decision plan: $\chi_t : \Theta^t \rightarrow X_t$
 - $\chi_{0,t}$ are prescribed public decisions
 - $\chi_{i,t}$ are recommended private decisions for agent $i \geq 1$
- Decision plan induces stochastic process $\mu[\chi]$ on Θ
- Transfers: $\psi_{i,t} : \Theta^t \rightarrow \mathbb{R}$; PDV $\Psi_i(\theta) = \sum_{t=0}^{\infty} \delta^t \psi_{i,t}(\theta^t)$
 - Measurable, uniformly bounded
 - Budget balance: $\sum_i \psi_{i,t}(\theta) \equiv 0$
Direct Mechanisms

- Measurable decision plan: \(\chi_t : \Theta^t \rightarrow \chi_t \)
 - \(\chi_{0,t} \) are prescribed public decisions
 - \(\chi_{i,t} \) are recommended private decisions for agent \(i \geq 1 \)

- Decision plan induces stochastic process \(\mu[\chi] \) on \(\Theta \)

- Transfers: \(\psi_{i,t} : \Theta^t \rightarrow \mathbb{R} \); PDV \(\Psi_i(\theta) = \sum_{t=0}^{\infty} \delta^t \psi_{i,t}(\theta^t) \)
 - Measurable, uniformly bounded
 - Budget balance: \(\sum_i \psi_{i,t}(\theta) \equiv 0 \)

- Information Disclosure: All announcements are public
Measurable decision plan: $\chi_t : \Theta^t \rightarrow X_t$

- $\chi_{0,t}$ are prescribed public decisions
- $\chi_{i,t}$ are recommended private decisions for agent $i \geq 1$

Decision plan induces stochastic process $\mu[\chi]$ on Θ

Transfers: $\psi_{i,t} : \Theta^t \rightarrow \mathbb{R}$; PDV $\Psi_i(\theta) = \sum_{t=0}^{\infty} \delta^t \psi_{i,t}(\theta^t)$

- Measurable, uniformly bounded
- Budget balance: $\sum_i \psi_{i,t}(\theta) \equiv 0$

Information Disclosure: All announcements are public

- Disclosing less would preserve equilibrium as long as agents can still infer recommended private decisions
Agent i’s strategy defines
Agent i’s strategy defines

- Reporting plan $\beta_{i,t}: \Theta_i^t \times \Theta_{-i}^{t-1} \rightarrow \Theta_{i,t}$
Agent i’s strategy defines:

- Reporting plan $\beta_{i,t} : \Theta_i^t \times \Theta_{-i}^{t-1} \rightarrow \Theta_{i,t}$
- Private action plan $\alpha_{i,t} : \Theta_i^t \times \Theta_{-i}^t \rightarrow X_{i,t}$
Agent i’s strategy defines

- Reporting plan $\beta_{i,t} : \Theta_i^t \times \Theta_{-i}^{t-1} \rightarrow \Theta_{i,t}$
- Private action plan $\alpha_{i,t} : \Theta_i^t \times \Theta_{-i}^t \rightarrow X_{i,t}$

Strategy also defines behavior following agent’s own deviations, but this is irrelevant for the normal form.
strategies

- Agent i’s strategy defines
 - Reporting plan $\beta_{i,t} : \Theta_{i}^t \times \Theta_{-i}^{t-1} \rightarrow \Theta_{i,t}$
 - Private action plan $\alpha_{i,t} : \Theta_{i}^t \times \Theta_{-i}^{t-1} \rightarrow X_{i,t}$

- Strategy also defines behavior following agent’s own deviations, but this is irrelevant for the normal form

- Strategy is *truthful-obedient* if for all θ^t,

\[
\beta_{i,t}(\theta_{i}^t, \theta_{-i}^{t-1}) = \theta_{i,t},
\]
\[
\alpha_{i,t}(\theta^t) = \chi_{i,t}(\theta^t)
\]
Balanced Team Mechanism

- $U_i(\chi^*(\theta), \theta) = \sum_{t=1}^{\infty} \delta^t u_{i,t}(\chi_t(\tilde{\theta}^t), \tilde{\theta})$
Balanced Team Mechanism

- \(U_i(\chi^*(\theta), \theta) = \sum_{t=1}^{\infty} \delta^t u_{i,t} \left(\chi_t \left(\tilde{\theta}^t \right), \tilde{\theta} \right) \)

- Efficient decision \(\chi^* \): \(\max_{\chi} \mathbb{E}_{\tilde{\theta}}^{\mu[\chi]} \left[\sum_i U_i(\chi^*(\theta), \theta) \right] \)
Balanced Team Mechanism

- \(U_i (\chi^*(\theta), \theta) = \sum_{t=1}^{\infty} \delta^t u_{i,t} \left(\chi_t \left(\tilde{\theta}^t \right), \tilde{\theta} \right) \)

- Efficient decision \(\chi^* : \max_{\chi} \mathbb{E}_{\theta}^{\mu[\chi]} \left[\sum_i U_i (\chi^*(\theta), \theta) \right] \)

- Balanced Team Transfers:

\[
\psi_{i,t}^B (\theta^t) = \gamma_{i,t} (\theta_{i,t}, \theta^{t-1}) - \frac{1}{l-1} \sum_{j \neq i} \gamma_{j,t} (\theta_{j,t}, \theta^{t-1}), \text{ where}
\]

\[
\gamma_{j,t} (\theta_{j,t}, \theta^{t-1}) = \delta^{-t} \left(\mathbb{E}_{\tilde{\theta}}^{\mu_t[\chi]|\theta_{j,t}, \theta^{t-1}} \left[\sum_{i \neq j} U_i (\chi^*(\theta), \theta) \right] \right) - \mathbb{E}_{\tilde{\theta}}^{\mu_t[\chi]|\theta^{t-1}} \left[\sum_{i \neq j} U_i (\chi^*(\theta), \theta) \right]
\]
Balanced Team Mechanism

- \(U_i(\chi^*(\theta), \theta) = \sum_{t=1}^{\infty} \delta^t u_{i,t} \left(\chi_t \left(\tilde{\theta}^t \right), \tilde{\theta} \right) \)

- Efficient decision \(\chi^* : \max_{\chi} \mathbb{E}_{\tilde{\theta}}^\mu[\chi] \left[\sum_i U_i(\chi^*(\theta), \theta) \right] \)

- Balanced Team Transfers:
 \[
 \psi^B_{i,t}(\theta^t) = \gamma_{i,t}(\theta_{i,t}, \theta^{t-1}) - \frac{1}{l-1} \sum_{j \neq i} \gamma_{j,t}(\theta_{j,t}, \theta^{t-1}), \text{ where }
 \gamma_{j,t}(\theta_{j,t}, \theta^{t-1}) = \delta^{-t} \left(\begin{array}{c}
 \mathbb{E}_{\tilde{\theta}}^\mu_{t}[\chi] | \theta_{j,t}, \theta^{t-1} [\sum_{i \neq j} U_i(\chi^*(\theta), \theta)] \\
 - \mathbb{E}_{\tilde{\theta}}^\mu_{t}[\chi] | \theta^{t-1} [\sum_{i \neq j} U_i(\chi^*(\theta), \theta)]
 \end{array} \right)
 \]

Theorem

Assume independent types: conditional on \(x^t_0 \), agent \(i \)'s private information \(\theta^t_i, x^t_i \) does not affect the distribution of \(\theta_{j,t} \), for \(j \neq i \). Also assume private values: \(u_{j,t}(x^t, \theta^t) \) does not depend on \(\theta^t_i, x^t_i \) for all \(t \), \(i \neq j \). Then balanced team mechanism is BIC.
Balancing: Example

In initial example:

\[-U_S (\chi(\hat{\theta}), \hat{\theta}_S) = c(\chi_1(\hat{\theta}_S), \hat{\theta}_S) + \delta c(\chi_2(\hat{\theta}_S, \hat{\theta}_{B,2}), \hat{\theta}_S) + \delta^2 c(\chi_3(\hat{\theta}_S, \hat{\theta}_{B,3}), \hat{\theta}_S)\]

\[\gamma_{B,3}(\hat{\theta}_{B,2}, \hat{\theta}_{B,3}, \hat{\theta}_S) = -c(\chi_3(\hat{\theta}_S, \hat{\theta}_{B,3}), \hat{\theta}_S) + \mathbb{E}_{\bar{\theta}_{B,3}} [c(\chi_3(\hat{\theta}_S, \bar{\theta}_{B,3}), \hat{\theta}_S) | \hat{\theta}_{B,2}]\]

\[\gamma_{B,2}(\hat{\theta}_{B,2}, \hat{\theta}_S) = -c(\chi_2(\hat{\theta}_S, \hat{\theta}_{B,2}), \hat{\theta}_S) - \delta \mathbb{E}_{\bar{\theta}_{B,3}} [c(\chi_3(\hat{\theta}_S, \bar{\theta}_{B,3}), \hat{\theta}_S) | \hat{\theta}_{B,2}]\]

\[+ \mathbb{E}_{\bar{\theta}_{B,2}, \bar{\theta}_{B,3}} [c(\chi_2(\hat{\theta}_S, \bar{\theta}_{B,2}), \hat{\theta}_S) + \delta c(\chi_3(\hat{\theta}_S, \bar{\theta}_{B,3}), \hat{\theta}_S)]\]
Balancing: Proof Sketch

Let $\Psi_j(\tilde{\theta}) = \sum_{i \neq j} U_i(\chi^*(\theta), \theta)$, pv of j’s payments:

$$
\delta^t \gamma_{j,t}(\hat{\theta}_j^t, \hat{\theta}_-^{t-1}) = \underbrace{\mathbb{E}_{\tilde{\theta}}^\mu_t[\chi] | \hat{\theta}_j,t, \hat{\theta}_1^{t-1}}_{\gamma_{j,t}^+(\hat{\theta}_j,t, \hat{\theta}_1^{t-1})} \underbrace{[\Psi_j(\tilde{\theta})]}_{\gamma_{j,t}^-(\hat{\theta}_1^{t-1})} - \underbrace{\mathbb{E}_{\tilde{\theta}}^\mu_t[\chi] | \hat{\theta}_1^{t-1}}_{\gamma_{j,t}^-(\hat{\theta}_1^{t-1})} \underbrace{[\Psi_j(\tilde{\theta})]}_{\gamma_{j,t}^+(\hat{\theta}_j,t, \hat{\theta}_-^{t-1})} $$

Two terms are expectations of the same function $\Psi_j(\tilde{\theta})$.

Claim 1: Expected present value of γ_i, t equals, up to a constant, that of ψ_i, t

Claim 2: Expected present value of γ_j, t is zero for each $j \neq i$.
Balancing: Proof Sketch

- Let $\Psi_j(\tilde{\theta}) = \sum_{i \neq j} U_i(\chi^*(\theta), \theta)$, pv of j’s payments:

$$\delta^t \gamma_{j,t}(\hat{\theta}_j^t, \hat{\theta}_{-j}^{t-1}) = \mathbb{E}_{\tilde{\theta}}^\mu_t[\chi]\hat{\theta}_{j,t},\hat{\theta}_t^{t-1} \left[\Psi_j(\tilde{\theta}) \right] - \mathbb{E}_{\tilde{\theta}}^\mu_t[\chi]|\hat{\theta}_t^{t-1} \left[\Psi_j(\tilde{\theta}) \right]$$

- Two terms are expectations of the same function $\Psi_j(\tilde{\theta})$
Balancing: Proof Sketch

- Let $\Psi_j(\tilde{\theta}) = \sum_{i \neq j} U_i(\chi^*(\theta), \theta)$, pv of j’s payments:

$$\delta^t \gamma_{j,t}(\hat{\theta}^t_j, \hat{\theta}^{t-1}_{-j}) = E^{|\theta^t_t[x]|}_{\hat{\theta}^t_j, \hat{\theta}^{t-1}_{-j}} [\Psi_j(\tilde{\theta})] - E^{|\theta^t_t[x]|}_{\hat{\theta}^{t-1}} [\Psi_j(\tilde{\theta})]$$

Two terms are expectations of the same function $\Psi_j(\tilde{\theta})$

- $\gamma^-_{j,t}(\hat{\theta}^{t-1})$ uses only period $t - 1$ information
Balancing: Proof Sketch

- Let $\Psi_j (\tilde{\theta}) = \sum_{i \neq j} U_i (\chi^*(\theta), \theta)$, pv of j's payments:

$$\delta^t \gamma_{j,t} (\hat{\theta}_j, \hat{\theta}_{t-j}) = \mathbb{E}_{\hat{\theta}}^{\mu_t}[\chi] \gamma_{j,t}^+ (\hat{\theta}_j, \hat{\theta}_t) - \mathbb{E}_{\hat{\theta}}^{\mu_t}[\chi] \gamma_{j,t}^- (\hat{\theta}_t)$$

- Two terms are expectations of the same function $\Psi_j (\tilde{\theta})$
- $\gamma_{j,t}^- (\hat{\theta}_t)$ uses only period $t - 1$ information
- $\gamma_{j,t}^+(\hat{\theta}_j, \hat{\theta}_t)$ uses, in addition, agent j's period-t report
Balancing: Proof Sketch

- Let $\Psi_j(\tilde{\theta}) = \sum_{i \neq j} U_i(\chi^*(\theta), \theta)$, pv of j’s payments:

$$\delta^t \gamma_{j,t}(\tilde{\theta}_j, \tilde{\theta}^{t-1}_j) = \left[E_{\tilde{\theta}}^{\mu_t} [\chi] | \hat{\theta}_{j,t}, \hat{\theta}^{t-1}_j \right] [\Psi_j(\tilde{\theta})] - \left[E_{\tilde{\theta}}^{\mu_t} [\chi] | \hat{\theta}^{t-1}_j \right] [\Psi_j(\tilde{\theta})]$$

- Two terms are expectations of the same function $\Psi_j(\tilde{\theta})$

- $\gamma^-_{j,t}(\hat{\theta}^{t-1}_j)$ uses only period $t - 1$ information

- $\gamma^+_{j,t}(\hat{\theta}_{j,t}, \hat{\theta}^{t-1}_j)$ uses, in addition, agent j’s period-t report

- For any deviation by agent i, if the others are truthful-obedient:
Let $\Psi_j(\tilde{\theta}) = \sum_{i \neq j} U_i(\chi^*(\theta), \theta)$, pv of j’s payments:

$$\delta^t \gamma_{j,t}(\hat{\theta}_j^t, \hat{\theta}_j^{t-1}) = \mathbb{E}_{\tilde{\theta}}^{\mu_t[\chi]|\hat{\theta}_j, t, \hat{\theta}_t^{t-1}} \left[\Psi_j(\tilde{\theta}) \right] - \mathbb{E}_{\tilde{\theta}}^{\mu_t[\chi]|\hat{\theta}_t^{t-1}} \left[\Psi_j(\tilde{\theta}) \right]$$

Two terms are expectations of the same function $\Psi_j(\tilde{\theta})$

$\gamma_{j,t}(\hat{\theta}_j^{t-1})$ uses only period $t-1$ information

$\gamma_{j,t}^+(\hat{\theta}_j, \hat{\theta}_j^{t-1})$ uses, in addition, agent j’s period-t report

For any deviation by agent i, if the others are truthful-obedient:

- **Claim 1**: Expected present value of $\gamma_{i,t}$ equals, up to a constant, that of $\psi_{i,t}$
Let $\Psi_j(\tilde{\theta}) = \sum_{i \neq j} U_i(\chi^*(\theta), \theta)$, pv of j’s payments:

$$\delta^t \gamma_{j,t}(\hat{\theta}_j^t, \hat{\theta}_{-j}^{t-1}) = \mathbb{E}_{\tilde{\theta}}^{\mu_t[\chi]|\hat{\theta}_{j,t},\hat{\theta}_{-j}^{t-1}} [\Psi_j(\tilde{\theta})] - \mathbb{E}_{\tilde{\theta}}^{\mu_t[\chi]|\hat{\theta}_{-j}^{t-1}} [\Psi_j(\tilde{\theta})]$$

Two terms are expectations of the same function $\Psi_j(\tilde{\theta})$

- $\gamma_{j,t}^- (\hat{\theta}^{t-1})$ uses only period $t - 1$ information
- $\gamma_{j,t}^+ (\hat{\theta}_j^t, \hat{\theta}_{-j}^{t-1})$ uses, in addition, agent j’s period-t report

For any deviation by agent i, if the others are truthful-obedient:

- **Claim 1:** Expected present value of $\gamma_{i,t}$ equals, up to a constant, that of $\psi_{i,t}$
- **Claim 2:** Expected present value of $\gamma_{j,t}$ is zero for each $j \neq i$
Proof of Claim 2

- For any possible deviation of agent i, expected present value of $\gamma_{j,t}$ is zero for each $j \neq i$:

\[
\begin{align*}
\theta_{j,1} & \quad \theta_{-j,1} & \quad \theta_{j,2} \\
-\gamma_{j,1}^- & \quad \gamma_{j,1}^+ & \quad -\gamma_{j,2}^- & \quad \gamma_{j,2}^+ & \quad \ldots & \quad \ldots \\
-\delta \gamma_{j,1} & \quad -\delta^2 \gamma_{j,2} & \quad -\delta^t \gamma_{j,t} & \quad \gamma_{j,t}^+
\end{align*}
\]
Proof of Claim 2

- For any possible deviation of agent i, expected present value of $\gamma_{j,t}$ is zero for each $j \neq i$:

- Independent types \Rightarrow agent i’s private history (θ_i^t, x_i^{t-1}) does not affect beliefs over $\tilde{\theta}_{j,t}$
Proof of Claim 2

- For any possible deviation of agent i, expected present value of $\gamma_{j,t}$ is zero for each $j \neq i$:

- Independent types \Rightarrow agent i’s private history $(\theta_i^t, \chi_i^{t-1})$ does not affect beliefs over $\tilde{\theta}_{j,t}$

- If agent j is truthful, the expectation of $\gamma_{j,t}^+(\tilde{\theta}_{j,t}, \hat{\theta}_t^{t-1})$ before time t equals $\gamma_{j,t}^-(\hat{\theta}_t^{t-1})$, for any report history $\hat{\theta}_t^{t-1}$
Proof of Claim 2

- For any possible deviation of agent i, expected present value of $\gamma_{j,t}$ is zero for each $j \neq i$:

\[\theta_{j,1} \quad \theta_{-j,1} \quad \theta_{j,2} \quad \ldots \quad \theta_{j,t} \]

\[\begin{array}{c}
-\gamma_{j,1}^- \\
\delta \gamma_{j,1}^-
\end{array} \quad \begin{array}{c}
\gamma_{j,1}^+ \\
\delta^2 \gamma_{j,2}^-
\end{array} \quad \begin{array}{c}
-\gamma_{j,2}^- \\
\delta^t \gamma_{j,t}^-
\end{array} \quad \begin{array}{c}
\gamma_{j,2}^+ \\
\delta^t \gamma_{j,t}^+
\end{array} \quad \ldots \]

- Independent types \Rightarrow agent i’s private history (θ_i^t, x_i^{t-1}) does not affect beliefs over $\tilde{\theta}_{j,t}$

- If agent j is truthful, the expectation of $\gamma_{j,t}^+(\tilde{\theta}_{j,t}, \hat{\theta}_{t}^{t-1})$ before time t equals $\gamma_{j,t}^-(\hat{\theta}_{t}^{t-1})$, for any report history $\hat{\theta}_{t}^{t-1}$

- LIE: ex ante expectation of $\gamma_{j,t}$ equals zero
Proof of Claim 1

- For any possible deviation of agent i, expected present value of $\gamma_{i,t}$ equals, up to a constant, that of $\psi_{i,t}$:

$$\theta_{i,1} \quad \theta_{-i,1} \quad \ldots \quad \theta_{-i,t-1} \quad \theta_{i,t}$$

$$-\gamma_{i,1} \quad \gamma_{i,1} \quad -\gamma_{i,2} \quad \ldots \quad \gamma_{i,t-1} \quad -\gamma_{i,t} \quad \gamma_{i,t}$$

$$\leftarrow = 0 \rightarrow$$

Thus, expectation of $t \sum_{\tau=1}^{\delta} \tilde{\gamma}_{i,\tau}$ equals to that of $\tilde{\gamma}_{i} + \gamma_{i,t}$.
For any possible deviation of agent i, expected present value of $\gamma_{i,t}$ equals, up to a constant, that of $\psi_{i,t}$:

\[
\begin{align*}
\theta_{i,1} & \quad \theta_{-i,1} \\
-\gamma_{i,1} & \quad \gamma_{i,1} & -\gamma_{i,2} \\
\quad & \quad \text{=} 0 & \quad \text{=} 0
\end{align*}
\]

Independent types \Rightarrow agent i’s private history $(\theta_{i,t}^t, x_{i,t-1}^t)$ does not affect beliefs over $\tilde{\theta}_{-i,t}$
Proof of Claim 1

- For any possible deviation of agent i, expected present value of $\gamma_{i,t}$ equals, up to a constant, that of $\psi_{i,t}$:

 \[
 \theta_{i,1} \quad \theta_{-i,1} \quad \ldots \quad \theta_{-i,t-1} \quad \theta_{i,t} \\
 \begin{array}{c}
 -\gamma_{i,1} \\
 \gamma_{i,1} \\
 -\gamma_{i,2} \\
 \gamma_{i,t-1} \\
 -\gamma_{i,t} \\
 \gamma_{i,t}
 \end{array}
 \]

 \[
 \begin{array}{c}
 \leftarrow = 0 \rightarrow \\
 \leftarrow = 0 \rightarrow
 \end{array}
 \]

- Independent types \Rightarrow agent i’s private history $(\theta_{i,t}, x_{t-1}^{t-1})$ does not affect beliefs over $\tilde{\theta}_{-i,t}$

- If the others are truthful, agent i’s time-t expectation of $\gamma_{i,t+1}(\tilde{\theta}_{-i,t}, \hat{\theta}_{i,t}, \hat{\theta}^{t-1})$ equals $\gamma_{i,t}(\tilde{\theta}_{i,t}, \hat{\theta}^{t-1})$ for any $\hat{\theta}_{i,t}, \hat{\theta}^{t-1}$
Proof of Claim 1

- For any possible deviation of agent \(i \), expected present value of \(\gamma_{i,t} \) equals, up to a constant, that of \(\psi_{i,t} \):

\[
\theta_{i,1} \quad \theta_{-i,1} \quad \ldots \quad \theta_{-i,t-1} \quad \theta_{i,t} \]

\[
\leftarrow = 0 \rightarrow
\]

\[
-\gamma_{i,1} \quad \gamma_{i,1} \quad \ldots \quad \gamma_{i,t-1} \quad \gamma_{i,t} \]

- Independent types \(\Rightarrow \) agent \(i \)'s private history \((\theta^t_i, x^{t-1}_i) \) does not affect beliefs over \(\tilde{\theta}_{-i,t} \)

- If the others are truthful, agent \(i \)'s time-\(t \) expectation of \(\gamma_{i,t+1}(\tilde{\theta}_{-i,t}, \hat{\theta}_i, \hat{\theta}^{t-1}) \) equals \(\gamma_{i,t}(\hat{\theta}_i, \hat{\theta}^{t-1}) \) for any \(\hat{\theta}_i, \hat{\theta}^{t-1} \)

- LIE: the two terms have the same ex ante expectations as well
Proof of Claim 1

- For any possible deviation of agent i, expected present value of $\gamma_{i,t}$ equals, up to a constant, that of $\psi_{i,t}$:

$$\theta_{i,1} \quad \theta_{-i,1} \quad \ldots \quad \theta_{-i,t-1} \quad \theta_{i,t}$$

$$\gamma_{i,1}^+ \quad \gamma_{i,2}^- \quad \ldots \quad \gamma_{i,t-1}^+ \quad \gamma_{i,t}^-$$

- Independent types \Rightarrow agent i’s private history (θ_i^t, x_i^{t-1}) does not affect beliefs over $\tilde{\theta}_{-i,t}$
- If the others are truthful, agent i’s time-t expectation of $\gamma_{i,t+1}^- (\tilde{\theta}_{-i,t}, \hat{\theta}_{i,t}, \hat{\theta}^{t-1})$ equals $\gamma_{i,t}^+ (\hat{\theta}_{i,t}, \hat{\theta}^{t-1})$ for any $\hat{\theta}_{i,t}, \hat{\theta}^{t-1}$
- LIE: the two terms have the same ex ante expectations as well
- Thus, expectation of $\sum_{\tau=1}^{t} \delta^\tau \tilde{\gamma}_{i,\tau}$ equals to that of $\tilde{\gamma}_{i,t}^+ - \tilde{\gamma}_{i,1}^-$
Proof of Claim 1

For any possible deviation of agent i, expected present value of $\gamma_{i,t}$ equals, up to a constant, that of $\psi_{i,t}$:

\[
\theta_{i,1} \quad \theta_{-i,1} \quad \theta_{-i,t-1} \quad \theta_{i,t} \\
\gamma_{i,1}^{+} \quad \gamma_{i,2}^{-} \quad \gamma_{i,t-1}^{+} \quad \gamma_{i,t}^{+}
\]

\[\gamma^{+}_{i,t} \left(\tilde{\theta}_{-i,t}, \hat{\theta}_{i,t}, \hat{\theta}^{t-1} \right) = \gamma^{-}_{i,t} \left(\tilde{\theta}_{i,t}, \hat{\theta}_{i,t}, \hat{\theta}^{t-1} \right) \]

\[\gamma_{i,1}^{-} \quad \gamma^{+}_{i,1} \quad \gamma^{+}_{i,t} \quad \gamma^{-}_{i,t} \quad \gamma_{i,t}^{-}
\]

- Independent types \Rightarrow agent i’s private history $(\theta_{i}^{t}, x_{i}^{t-1})$ does not affect beliefs over $\tilde{\theta}_{-i,t}$
- If the others are truthful, agent i’s time-t expectation of $\gamma_{i,t+1}^{-}(\tilde{\theta}_{-i,t}, \hat{\theta}_{i,t}, \hat{\theta}^{t-1})$ equals $\gamma_{i,t}^{+}(\tilde{\theta}_{i,t}, \hat{\theta}_{i,t}, \hat{\theta}^{t-1})$ for any $\hat{\theta}_{i,t}, \hat{\theta}^{t-1}$
- LIE: the two terms have the same ex ante expectations as well

Thus, expectation of $\sum_{\tau=1}^{t} \delta^{\tau} \tilde{\gamma}_{i,\tau}$ equals to that of $\tilde{\gamma}_{i,t}^{+} - \tilde{\gamma}_{i,1}^{-}$

- $\gamma_{i,1}^{-}$ is unaffected by reports; $\tilde{\gamma}_{i,t}^{+} \rightarrow \Psi_{i} (\tilde{\theta})$ as $t \rightarrow \infty$
Decentralized Games (No External Enforcer)

- In each period $t = 1, 2, ...$
Decentralized Games (No External Enforcer)

- In each period $t = 1, 2, ...$
 - Each agent i privately observes signal $\theta_{i,t}$
Decentralized Games (No External Enforcer)

- In each period $t = 1, 2, ...$
 1. Each agent i privately observes signal $\theta_{i,t}$
 2. Agents send simultaneous reports

Markovian Assumptions:
- Finite action, type spaces, the same in each period
- Markovian type transitions: $\nu_t(\theta_t, x_t) = \bar{\nu}(\theta_t, x_t)$
- Stationary separable payoffs $u_{i,t}(x_t, \theta_t) = \bar{u}_i(x_t)$

"Blackwell policy" χ - a Markovian decision rule that is efficient for all δ close enough to 1, for any starting state
Decentralized Games (No External Enforcer)

- In each period $t = 1, 2, ...$
 1. Each agent i privately observes signal $\theta_{i,t}$
 2. Agents send simultaneous reports
 3. Each agent i chooses private action $x_{i,t}$
Decentralized Games (No External Enforcer)

- In each period \(t = 1, 2, \ldots \)
 1. Each agent \(i \) privately observes signal \(\theta_{i,t} \)
 2. Agents send simultaneous reports
 3. Each agent \(i \) chooses private action \(x_{i,t} \)
 4. Each agent \(i \) chooses public action \(x_{0,i,t} \), makes public payment \(z_{i,j,t} \geq 0 \) to each agent \(j \)
Decentralized Games (No External Enforcer)

- In each period $t = 1, 2, ...$
 1. Each agent i privately observes signal $\theta_{i,t}$
 2. Agents send simultaneous reports
 3. Each agent i chooses private action $x_{i,t}$
 4. Each agent i chooses public action $x_{0,i,t}$, makes public payment $z_{i,j,t} \geq 0$ to each agent j

 \Rightarrow Public action $x_{0,t} = (x_{0,i,t})_{i=1}^N$, total transfer $y_{i,t} = \sum_j (z_{j,i,t} - z_{i,j,t})$ to agent i (budget-balanced)
Decentralized Games (No External Enforcer)

- In each period \(t = 1, 2, \ldots \)
 1. Each agent \(i \) privately observes signal \(\theta_{i,t} \)
 2. Agents send simultaneous reports
 3. Each agent \(i \) chooses private action \(x_{i,t} \)
 4. Each agent \(i \) chooses public action \(x_{0,i,t} \), makes public payment \(z_{i,j,t} \geq 0 \) to each agent \(j \)

\[\Rightarrow \text{Public action } x_{0,t} = (x_{0,i,t})_{i=1}^{N}, \text{ total transfer } y_{i,t} = \sum_{j} (z_{j,i,t} - z_{i,j,t}) \text{ to agent } i \text{ (budget-balanced)} \]

- Markovian Assumptions:
 - Finite action, type spaces, the same in each period
 - Markovian type transitions:
 \[\nu_{t} = \bar{\nu}(\theta_{t,j}, \theta_{t,1}, x_{t,1}) \]
 - Stationary separable payoffs
 \[u_{i,t}(x_{t}, \theta_{t}) = \bar{u}_{i}(x_{t}, \theta_{t}) \]
 - "Blackwell policy" \(\chi \)- a Markovian decision rule that is efficient for all \(\delta \) close enough to 1, for any starting state

Can we sustain \(\chi \) in PBE?
Decentralized Games (No External Enforcer)

- In each period \(t = 1, 2, ... \)
 1. Each agent \(i \) privately observes signal \(\theta_{i,t} \)
 2. Agents send simultaneous reports
 3. Each agent \(i \) chooses private action \(x_{i,t} \)
 4. Each agent \(i \) chooses public action \(x_{0,i,t} \), makes public payment \(z_{i,j,t} \geq 0 \) to each agent \(j \)

\[\Rightarrow \text{Public action } x_{0,t} = (x_{0,i,t})_{i=1}^{N}, \text{ total transfer } \]
\[y_{i,t} = \sum_{j} (z_{j,i,t} - z_{i,j,t}) \text{ to agent } i \text{ (budget-balanced)} \]

- Markovian Assumptions:
 - Finite action, type spaces, the same in each period
Decentralized Games (No External Enforcer)

- In each period \(t = 1, 2, \ldots \)
 1. Each agent \(i \) privately observes signal \(\theta_{i,t} \)
 2. Agents send simultaneous reports
 3. Each agent \(i \) chooses private action \(x_{i,t} \)
 4. Each agent \(i \) chooses public action \(x_{0,i,t} \), makes public payment \(z_{i,j,t} \geq 0 \) to each agent \(j \)

\[\Rightarrow \text{Public action} \ x_{0,t} = (x_{0,i,t})_{i=1}^{N}, \text{total transfer} \]
\[y_{i,t} = \sum_{j} (z_{j,i,t} - z_{i,j,t}) \] to agent \(i \) (budget-balanced)

- Markovian Assumptions:
 - Finite action, type spaces, the same in each period
 - Markovian type transitions: \(\nu_t \left(\theta_t | \theta_{t-1}, x_{t-1} \right) = \bar{v} \left(\theta_t | \theta_{t-1}, x_{t-1} \right) \)
Decentralized Games (No External Enforcer)

- In each period $t = 1, 2, ...$
 1. Each agent i privately observes signal $\theta_{i,t}$
 2. Agents send simultaneous reports
 3. Each agent i chooses private action $x_{i,t}$
 4. Each agent i chooses public action $x_{0,i,t}$, makes public payment $z_{i,j,t} \geq 0$ to each agent j

\Rightarrow Public action $x_{0,t} = (x_{0,i,t})_{i=1}^N$, total transfer $y_{i,t} = \sum_j (z_{j,i,t} - z_{i,j,t})$ to agent i (budget-balanced)

- Markovian Assumptions:
 - Finite action, type spaces, the same in each period
 - Markovian type transitions: $\nu_t (\theta_t | \theta_t^{t-1}, x_t^{t-1}) = \bar{\nu} (\theta_t | \theta_{t-1}, x_{t-1})$
 - Stationary separable payoffs $u_{i,t} (x_t, \theta_t) = \bar{u}_i (x_t, \theta_t)$
Decentralized Games (No External Enforcer)

- In each period $t = 1, 2, ...$
 1. Each agent i privately observes signal $\theta_{i,t}$
 2. Agents send simultaneous reports
 3. Each agent i chooses private action $x_{i,t}$
 4. Each agent i chooses public action $x_{0,i,t}$, makes public payment $z_{i,j,t} \geq 0$ to each agent j

- \Rightarrow Public action $x_{0,t} = (x_{0,i,t})_{i=1}^{N}$, total transfer $y_{i,t} = \sum_{j} (z_{j,i,t} - z_{i,j,t})$ to agent i (budget-balanced)

- Markovian Assumptions:
 - Finite action, type spaces, the same in each period
 - Markovian type transitions: $\nu_t \left(\theta_t | \theta_{t-1}, x_{t-1} \right) = \bar{v} \left(\theta_t | \theta_{t-1}, x_{t-1} \right)$
 - Stationary separable payoffs $u_{i,t} \left(x_t, \theta_t \right) = \bar{u}_i \left(x_t, \theta_t \right)$

- $\Rightarrow \exists$ a “Blackwell policy” χ^* - a Markovian decision rule that is efficient for all δ close enough to 1, for any starting state
Decentralized Games (No External Enforcer)

- In each period $t = 1, 2, ...$
 1. Each agent i privately observes signal $\theta_{i,t}$
 2. Agents send simultaneous reports
 3. Each agent i chooses private action $x_{i,t}$
 4. Each agent i chooses public action $x_{0,i,t}$, makes public payment $z_{i,j,t} \geq 0$ to each agent j

\[\Rightarrow \text{Public action } x_{0,t} = (x_{0,i,t})_{i=1}^N, \text{ total transfer} \]
\[y_{i,t} = \sum_{j} (z_{j,i,t} - z_{i,j,t}) \text{ to agent } i \text{ (budget-balanced)} \]

- Markovian Assumptions:
 - Finite action, type spaces, the same in each period
 - Markovian type transitions: $\nu_t \left(\theta_t | \theta^{t-1}, x^{t-1} \right) = \bar{\nu} \left(\theta_t | \theta_{t-1}, x_{t-1} \right)$
 - Stationary separable payoffs $u_{i,t} (x^t, \theta^t) = \bar{u}_i (x_t, \theta_t)$

\[\Rightarrow \exists \text{ “Blackwell policy” } \chi^* \text{ - a Markovian decision rule that is efficient for all } \delta \text{ close enough to 1, for any starting state} \]

- Can we sustain χ^* in PBE?
Implement the Balanced Team Mechanism

When no publicly observed deviation, make payments

\[z_{i,j,t} = \frac{1}{l-1} \gamma_{j,t}(\theta_j^t, \tilde{\theta}_{-j}^{t-1}) + K_i \]

\[= \frac{1}{l-1} \sum_{k \neq j} \sum_{\tau=t}^{\infty} \delta^{\tau-t} \left(\mathbb{E}_{\tilde{\theta}}^{\mu_t[X^*]|\theta_j^t,\tilde{\theta}_{-j}^{t-1}} \right) \left[\tilde{u}_k (X^* (\tilde{\theta}_\tau), \tilde{\theta}_\tau) \right] + K_i \]
Implement the Balanced Team Mechanism

When no publicly observed deviation, make payments

\[
 z_{i,j,t} = \frac{1}{l-1} \gamma_{j,t}(\theta^t_j, \theta^{t-1}_j) + K_i
\]

\[= \frac{1}{l-1} \sum_{k \neq j} \sum_{\tau=t}^\infty \delta^{\tau-t} \left(\mathbb{E}_{\tilde{\theta}}^{\mu_t}[\chi^*]|\theta^t_j,\theta^{t-1}_j \right. \left[\bar{u}_k (\chi^* (\tilde{\theta}_{\tau}), \tilde{\theta}_{\tau}) \right) + K_i \]

Can we prevent public deviations (="quitting") for any history?
Implement the Balanced Team Mechanism

- When no publicly observed deviation, make payments

\[z_{i,j,t} = \frac{1}{l-1} \gamma_{j,t}(\theta^t_j, \theta^{t-1}_j) + K_i \]

\[= \frac{1}{l-1} \sum_{k \neq j} \sum_{\tau=t}^{\infty} \delta^{\tau-t} \left(\mathbb{E}_{\hat{\theta}}^{\mu_t} [\chi^*] | \theta^t_j, \theta^{t-1}_j \left[\tilde{u}_k (\chi^* (\tilde{\theta}_\tau), \tilde{\theta}_\tau) \right] \right) + K_i \]

- Can we prevent public deviations (= “quitting”) for any history?
 - Can think of this as joint IC-IR constraints
Implement the Balanced Team Mechanism

- When no publicly observed deviation, make payments

\[z_{i,j,t} = \frac{1}{l-1} \gamma_{j,t}(\theta_j^t, \theta_{-j}^{t-1}) + K_i \]

- Can we prevent public deviations (=“quitting”) for any history?
 - Can think of this as joint IC-IR constraints
- Problem: transfers may be unbounded as \(\delta \to 1 \).
Implement the Balanced Team Mechanism

When no publicly observed deviation, make payments

\[z_{i,j,t} = \frac{1}{l-1} I \gamma_{j,t}(\theta_{j}^{t}, \theta_{-j}^{t-1}) + K_{i} \]

\[= \frac{1}{l-1} \sum_{k \neq j} \sum_{\tau = t}^{\infty} \delta^{\tau-t} \left(\begin{array}{c} \mathbb{E}^{\mu_{t}[\chi^{*}]}_{\bar{\theta}}[\tilde{\theta}_{\tau}, \tilde{\theta}_{\tau}] \left[\tilde{u}_{k} (\chi^{*} (\tilde{\theta}_{\tau}), \tilde{\theta}_{\tau}) \right] \\ -\mathbb{E}^{\mu_{t}[\chi^{*}]}_{\bar{\theta}}[\theta_{t-1}^{\tau}] \left[\tilde{u}_{k} (\chi^{*} (\tilde{\theta}_{\tau}), \tilde{\theta}_{\tau}) \right] \end{array} \right) + K_{i} \]

Can we prevent public deviations (= “quitting”) for any history?

- Can think of this as joint IC-IR constraints
- Problem: transfers may be unbounded as \(\delta \to 1 \).
- But: with limited persistence of \(\bar{\theta} \), the two expectations may be close as \(\tau \to \infty \)
Theorem

Take the Markov game with independent private values, which has a zero-payoff belief-free static NE. Suppose that a Blackwell policy \(\chi^* \) induces a Markov process with a unique ergodic set (and a possibly empty transient set), and that the ergodic distribution gives a positive expected total surplus. Then for \(\delta \) large enough, \(\chi^* \) can be sustained in a PBE using Balanced Team Transfers.
- Dynamic Games

 - In decentralized games, actions and transfers have to be self-enforcing; not commitment mechanism is available to the agents
 - In many games, transfers are not available
 - What is the relationship between the outcomes that can be attained WITH commitment and transfers, and what can be attained without?
 - When can efficiency be sustained as an eqm?
 - What do equilibria look like for different discount factors?
 - Efficiency includes BB
• Literature in Microeconomics on Dynamic Games and Contracts
 – Collusion: Athey and Bagwell (series of papers)
 – Repeated Trade: Athey and Miller
 – Relational Contracts: Levin, Rayo
 – Continuous time models, principal agent: Sannikov and coauthors
 – Cost of ex post as opposed to Bayesian equilibrium: Miller

• Literature in Dynamic Public Finance, Macro
 – Amador, Angeletos, and Werning; Tsyvinski; Athey, Atkeson, and Kehoe; others
Focus Today: Hidden Information

- Hidden actions impt, techniques and applications often different
- Auctions, collusion, bilateral or multilateral trade, public good provision, resource allocation, favor-trading in relationships, mutual insurance

Contracts, Games, and Games as Contracts
Mechanism Design Approach to Dynamic Games

- In static theory, we are familiar with mechanism design approach to analyzing games such as auctions
- Use tools such as envelope theorem, revenue equivalence, etc. to characterize equilibria
- Analyze constraints
- Take this approach to dynamic games
- Combine dynamic programming and mechanism design tools
- Frontier of current research: fully dynamic games (not repeated)
A Toolkit for Analyzing Dynamic Games and Contracts

- Abreu-Pearce-Stacchetti and dynamic programming
- The mechanism design approach to repeated games with hidden information
- Sustaining efficiency with transfers
- The folk theorem without transfers
- Dynamic Programming for Dynamic Games
Analyzing Repeated and Dynamic Games with Hidden Information

- Model the game/contract in extensive form
 - Dynamic games—see Battiglini (2005), Athey and Segal (2007)
 - Cumbersome to specify full strategy space and optimize over it

- Use APS/Mechanism Design combination
 - Applicability of results with the right assumptions
 - Can apply body of knowledge for hidden info games
A Dynamic Game with Time-Varying Hidden Information

- Players $i = 1, \ldots, I$
- Time $t = 1, \ldots, T$ (special cases: $T = 1, T = \infty$)
- Superscript/subscript notation: given $((y_{i,t})_{t=1}^{T})_{i=1}^{I}$,
 $y_t = (y_{i,t})_{i=1}^{I}$, $y_i = (y_{i,t})_{t=1}^{T}$, $y^t = (y^t_{t'})_{t'=1}^{t}$.
- Type spaces $\Theta_{i,t} \subseteq \mathbb{R}^n$, random variables $\bar{\theta}_{i,t}$ with realizations $\theta_{i,t}$.
- Communication among players: $m_{i,t} \in \mathcal{M}_{i,t}$
- Decisions $X_{i,t} \subseteq \mathbb{R}^n$.
- Transfer from player j to player i:
 $y_{j,i,t} \geq 0$, let $y_{i,t} = \sum_j y_{j,i,t} - y_{i,j,t}$.
 - Some models rule out transfers, e.g. collusion
History has two components:

- Public history $h^{t-1} = (x^{t-1}, m^{t-1}, y^{t-1})$, private histories θ^{t-1}

Timeline in period t:

- Types realized (θ_t)
 * History potentially affects distributions: $F_t(\theta_t; x^{t-1}, \theta^{t-1})$.
- Players communicate (m_t)
- Players simultaneously make decisions (x_t) and send transfers (y_t)

Note: can consider models without communication in this framework

- Messages can be contentless
- Athey-Bagwell (2001) show this can relax incentive constraints
Approach: Model Game with Mechanism Design Tools

- Define a recursive (direct revelation) mechanism
 - Replace mapping from types to actions with reporting strategy
 - Many games of interest have single crossing property, already restricted to monotone strategies

- Specify appropriate constraints
 - “On-schedule” and “off-schedule” deviations
 - Comparison between decentralized game and recursive mechanism
 * Game has add’l constraints, action space unrestricted
 * With patience, these can be satisfied
 * Game without transfers must deal with restrictions on continuation values
• The role of patience
 – Static mechanism that satisfies BIC, EPBB, IR may not be eqm in decentralized game with low patience
 * Mechanism provides commitment
 – Static mechanism that satisfies BIC, EPBB, fails IR may be eqm in game with high patience
 * Future gain from relationship relaxes participation constraints
• Independent (over time) types or perfectly persistent types
 – Use static tools
• More general dynamics
 – Contingent, multi-stage deviations
 – Transfers and continuation equilibria not perfect substitutes
Approach Here: Recursive Mechanisms

 - Miller (2005) sets out approach for general model

- Idea: use APS approach together with mechanism design tools

- Start by focusing on stationary (repeated) games
 - For appropriately selected constraints, a “self-generating” recursive mechanism will be a PPE
 - A PPE can be written as a recursive mechanism

- Apply tools from static mechanism design theory
The Recursive Mechanism

- Stage Mechanism
 - Action plan for each player: $\chi : \Theta_t \to X$
 - Transfer plan from i to j, $\psi_{i,j} : \Theta_t \to \mathbb{R}^+$, $\psi_i = \sum_j \psi_{j,i} - \psi_{i,j}$
 - Continuation value function $w : \Theta_t \to \mathbb{R}^I$.
 - Let $\gamma = (\chi, \psi, w)$

 Ex post utility: $u_i(\hat{\theta}_t, \theta_{i,t}; \gamma) = \pi_i(\chi(\hat{\theta}_t), \theta_{i,t}) + \psi_i(\hat{\theta}_t) + \delta w_i(\hat{\theta}_t)$

 Interim utility: $\bar{u}_i(\hat{\theta}_{i,t}, \theta_{i,t}; \gamma) = \mathbb{E}_{\tilde{\theta}_{-i,t}}[u_i((\hat{\theta}_{i,t}, \tilde{\theta}_{-i,t}), \theta_{i,t}; \gamma)]$

- Recursive Mechanism: $\langle V, \{\gamma(v)\}_{v \in V}, v_0 \rangle$
 - A set V An initial condition $v_0 \in V$
 - A set of stage mechanisms $\{\gamma(v)\}_{v \in V}$
Constraints

- (Bayesian, Interim) IC:
 \[\bar{u}_i(\theta_{i,t}, \theta_{i,t}; \gamma) \geq \bar{u}_i(\hat{\theta}_{i,t}, \theta_{i,t}; \gamma) \text{ for all } \hat{\theta}_{i,t} \in \Theta_{i,t} \]

- IR\((p_0)\)
 - “Outside option”: punishment equilibrium with payoffs \(p_0\).
 - Could be static Nash, “Nonparticipation.”
 - For simplicity, assume informative communication.

\[
\bar{u}_i(\theta_{i,t}, \theta_{i,t}; \gamma) \geq \sup_{\hat{\theta}_{i,t}} \left\{ \mathbb{E}_{\hat{\theta}_{-i,t}} \left[\sup_{x_i} \left(\pi_i(x_i, x_{-i}(\hat{\theta}_{i,t}, \bar{\theta}_{-i,t}), \theta_{i,t}) + \sum_j \psi_{j,i}(\hat{\theta}_{i,t}, \bar{\theta}_{-i,t}) \right) \right] \right\} + \delta p_{0,i}.
\]

* More generally, take expectations given messages. See Athey and Bagwell (2001) for more discussion of alternative IRs.
* Note assn about transfers and actions simultaneous.
Self-Generating Recursive Mechanism

- Define the set of attainable payoffs to be

$$\mathcal{V} = \text{co} \left\{ v \in \mathbb{R}^I : \exists \gamma \text{ s.t. } \sum_i v_i = \sum_i \frac{\mathbb{E}_{\tilde{\theta}_t} \left[u_i(\tilde{\theta}_t, \tilde{\theta}_{i,t}; \gamma) \right]}{1 - \delta} \right\}.$$
• For $V \subseteq \mathcal{V}$, $p_0 \in \mathbb{R}^I$, define $T(V; p_0)$ to be the set of $v \in \mathbb{R}^I$ for which there exist stage mechanisms $\gamma(v) = (\chi, \psi, w)(v)$ whereby

1. Promise-keeping: $\mathbb{E}_{\tilde{\theta}_t} \left[u_i(\tilde{\theta}_t, \tilde{\theta}_i, t; \gamma(v)) \right] = v_i$.
2. Coherence: $w(v) : \Theta_t \to V$.
3. Best response: $\gamma(v)$ satisfies IC and IR(p_0).

• V is self-generating relative to p_0 if $V \subseteq T(V; p_0)$.

 – Note: full set is $V \cup p_0$. Worst eqm not our focus; can extend to address this.

• $\langle V, \{\gamma(v)\}_{v \in V}, v_0 \rangle$ is self-generating relative to p_0 (SGRM(p_0)) if:
 V is self-generating relative to p_0 and,
 for each $v \in V$, (1)-(3) hold for $\gamma(v)$ and p_0.

Proposition 1 Fix δ. Suppose \(p_0 \) is a PPE and consider \(V >> p_0 \).

(i) If \(V \) is a set of PPE payoffs with informative communication, then there exists \(v_0 \in V, \{\gamma(v)\}_{v \in V} \) such that \(\langle V, \{\gamma(v)\}_{v \in V}, v_0 \rangle \) is a SGRM\((p_0)\).

(ii) Suppose that \(\langle V, \{\gamma(v)\}_{v \in V}, v_0 \rangle \) is a SGRM\((p_0)\). Then \(V \) is in the set of PPE payoffs.

- Proof: See Miller (2005) (does folk theorem; adapt arguments). Analogous to APS. Have to verify that constraints deter relevant deviations.

- If interested in set \(V \) of PPE payoffs w/o informative communication, modify IRs to get corresponding result.

- IR constraints imply that deviating “off-schedule” is not desirable.
Transforming to a Static Problem: The Case with Transfers

• Recall

\[u_i(\hat{\theta}_t, \theta_{i,t}; \gamma) = \pi_i(\chi(\hat{\theta}_t), \theta_{i,t}) + \psi_i(\hat{\theta}_t) + \delta w_i(\hat{\theta}_t). \]

 – With independent types, value for future play is the same for all types
 – Transfers and continuation values completely fungible

• WLOG, can consider stationary mechanisms (Levin, 2003)

• Then, consider static mechanism design problem with bounds on transfers imposed by IR
Proposition 2 Given χ, suppose there exist EPBB, uniformly bounded, IC transfers for χ, and that

$$\sum_i \mathbb{E}[\pi_i(\chi(\theta_t), \theta_{i,t})] > \sum p_{0,i}.$$

Then for δ sufficiently large, there exists a $SGRM(p), \langle V, \{\gamma(v)\}_{v \in V}, v_0 \rangle$ that is stationary, where

$$\sum_i v_{0,i} = \sum_i \mathbb{E}[\pi_i(\chi(\theta_t), \theta_{i,t})].$$

- Result says that if policy can be implemented with commitment, it can be self-enforcing for sufficiently patient agents.
• As δ grows, value of future eventually outweighs transfers. Independent future key.
Transforming to a Static Problem: The Case without Transfers

- Continuation values can mimic role of transfers, but for fixed δ, Pareto frontier of V is not in general linear
- Tradeoff between using variation in continuation values to provide incentives, and Pareto efficient continuation values
 - “Efficiency today v. efficiency tomorrow”
 - Finding: Sacrifice efficiency today
- Details of model determine shape of frontier of V
 - Multiplicity of efficient outcomes: partial linearity
- Approach (see Athey and Bagwell (2001)): start with large V, characterize $T(V)$
 - Analogous to static problem with restricted transfers
Folk Theorem without Transfers

 - Small changes in future per-period utility mimic transfers
 - FLM make unnecessary assumptions: independent, finite types
 * They focus on hidden action models and so don’t look for most general conditions
 - Miller (2005) generalizes to continuous types, correlated values

- Key elements of argument
 - Angle of supporting hyperplanes doesn’t matter generically
 - Average period payoffs (outside set) and hyperplane (inside set)
 - As $\delta \to 1$, length of hyperplane shrinks fast enough
 - Nothing about what to do for fixed δ
FIGURE: Supporting Hyperplanes

\[(1-\delta)\pi + \delta w = v\]
Applications

- Ongoing Relationships
 - Time-varying individual costs and benefits to acting, i.i.d. private information
 - Restrictions on monetary transfers

- Examples
 - Colluding firms, i.i.d. cost/inventory shocks
 - Public good provision
 * Families/villages
 * Legislatures
 - Policy games (government is privately informed)
• Questions about Collusion
 – Response of collusive behavior to institutional setting
 – Effects of anti-trust policy (Restrictions on communication, side-payments)
 – Market design: info. about indiv. bids and identities
 – Institutional design: industry assoc., smoke-filled rooms

• Central Tradeoffs
 – Productive efficiency requires low-cost firm serves market
 – Firms like market-share, incentive to mimic low-cost firm
 – Need low prices or future “punishment” with high market-share
 – Future price wars v. “future market-share favors”
Asymmetric Collusion

• Setup
 – 2 firms produce perfect substitutes
 – Unit mass of consumers, reservation price r
 – 2 cost types: $\theta^i \in \{\theta_L, \theta_H\}$, $\Pr(\theta^i = \theta_j) = \eta_j$.
 Case: $\eta_L > 1/2$.

• Firms...
 – may split the market unevenly; details not imp’t.
 – may not charge different prices to different consumers.
 – communicate prior to producing (see Athey and Bagwell (2001) for analysis of communication)
Summary of Ideas for Asymmetric Eq’a

- A first best scheme, always price at r
 - Eqm described by two “states”
 - Each period, announce types
 - State x: low cost firm serves market, but firm 2 serves most of market if firms have same cost
 * If (H, L), switch to state y, oth. return to x
 - State y: low cost firm serves market, but firm 1 serves most of market if firms have same cost
 * If (L, H), switch to state x, oth. return to y

- Paper: shows that first-best scheme can work if patient enough that diff. betw. x and y provides suff. incentives; if less patient shows similar schemes with partial prod. eff. are optimal.
Illustration of First-Best equilibrium
A Linear Self-Generating Set with First-Best Profits

- Goal: Compute a critical discount factor above which first-best profits can be attained in every period.

 - Requires linear, “self-generating” set with slope $-1 :$

 $$ [(x, y), (y, x)] $$

 - Two parts.

 - “Adding Up”: First, ignore IC-Off. Is it possible to have linear self-generating set with full efficiency?

 * Need to implement (x, y) using $v_{jk} \in [(x, y), (y, x)]$.

 * Future looks brighter than today for firm 1, and enough brighter when firm 1 has high cost to satisfy IC-On.
* Does it all “add up”?

- Second, when are IC-Off’s cleared?

Proposition 3 Suppose that $r - \theta_H < \theta_H - \theta_L$. Then, for all $\delta \in (\delta^FB, 1]$, there exist values $y > x > 0$ such that $x + y = 2\pi^{FB}/(1 - \delta)$, and the line segment $[(x, y), (y, x)]$ is “self-generating” and in the set of PPE values, V^*.
Persistent Types

• See Cole and Kocherlakota, Athey and Bagwell on persistent types and extending recursive mechanism design approach

• Two-period sophisticated rotation
 – Produce today, give up market share tomorrow
 – Not very effective with persistent types

• First-best example
 – Extends to persistent types
 – Keep track of beliefs as state variables
 – In a fully revealing equilibrium, all that matters is last period’s state
As persistence grows relative to patience, rigid pricing approximately optimal with log-concavity

– Cannot do efficient transfers, so pooling is optimal
FIGURE: First-Best Equilibrium with Persistent Types
Summing Up Dynamic Games

- Bring together mechanism design and dynamic programming to analyze repeated and dynamic games
- Apply tools from static literature
- Generalize to incorporate interesting dynamics
 - Today: Serial correlation
 - Learning-by-doing, experimentation, information gathering (Athey-Segal)
 - Maintaining budget account (Athey-Miller)
- Efficiency possible in wide range of circumstances
- Pooling is optimal for agents when limited instruments for providing incentives