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Preview

Static �expected externality� (AGV) mechanism is not IC - does not
prevent contingent deviations

Athey-Segal constructs a dynamic mechanism that

Implements e¢ cient decisions
Has a balanced budget
IC �prevents contingent deviations

Dynamic Games without Enforcement/Commitment

Athey-Segal: IR constraints can be satis�ed in an ergodic Markov
model with patient agents

Model: incorporate an �exit option� that can be taken in each period
In this case the mechanism can be self-enforcing

Recursive Mechanisms with Transfers

Dynamic Games without Enforcement and without Transfers
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A Simple Example

1a. Seller learns θS
1b. Buyer buys x1 from Seller
2a. Buyer learns θB
2b. Buyer buys x2 from Seller

Buyer�s total value: x1 + θBx2

Seller�s cost c(xt , θS ) = 1
2x
2
t /θS in each period t = 1, 2.

E¢ cient plan: χ1(θS ) = θS , χ2(θS , θB ) = θS θB

Note: B infers θS from χ1(θS )

Team Transfers (not BB):

γS (θ̂B , θ̂S ) = χ1(θ̂S ) + θ̂B � χ2
�
θ̂S , θ̂B

�
,

γB
�
θ̂B , θ̂S

�
= �c

�
χ2(θ̂S , θ̂B ), θ̂S

�
.
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Building an IC Dynamic Mechanism

Instead of EθS , calculate γB using S�s reported θ̂S :

γB
�
θ̂S , θ̂B

�
= �c

�
χ2(θ̂S , θ̂B ), θ̂S

�
?

But then S, who pays γB , would lie to manipulate it!

Let B�s γB = change in S�s expected [CP] cost induced by B�s report:

γB
�
θ̂S , θ̂B

�
= �c

�
χ2(θ̂S , θ̂B ), θ̂S

�
+Eθ̃B

�
c
�
χ2(θ̂S , θ̃B ), θ̂S

��
.

γB lets B internalize S�s cost ) B will not lie regardless of what θS
he infers

Eθ̃B
γB (θ̃B , θS ) � 0 ) having S pay γB does not alter S�s incentives

if B is truthful

Thus letting ψS (θB , θS ) = �ψB (θB , θS ) = γS (θS )� γB (θB , θS )
yields a BIC balanced-budget mechanism
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Generalizing Example: Add Another Period of Trade

Seller type constant across repetitions, buyer type serially correlated

1a. Seller learns θS
1b. Buyer buys x1 from Seller
2a. Buyer learns θB ,2
2b. Buyer buys x2 from Seller
3a. Buyer learns θB ,3
3b. Buyer buys x3 from Seller

Pay buyer γB = change in S�s expected cost induced by B�s report in
each repetition. Implies t = 3 incentive payment to buyer is:

γB ,3
�
θ̂S , θ̂B ,3, θ̂B ,2

�
= �c

�
χ3(θ̂S , θ̂B ,3), θ̂S

�
+Eθ̃B ,3

�
c
�
χ1(θ̂S , θ̃B ,3), θ̂S

��� θ̂B ,2
�
.

In t = 2, buyer sees add�l e¤ect of reporting θ̂B ,2 : a¤ects beliefs
�Correction term�was there to neutralize seller�s incentive to
manipulate γB ,3 through report of θ̂S
But in period 2, this correction distorts buyer�s incentives
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The Model

In each period t = 1, 2, . . .

1 Each agent i = 1, . . . ,N privately observes signal θi ,t 2 Θi ,t
2 Agents send simultaneous reports
3 Each agent i makes private decision xi ,t 2 Xi ,t
4 Mechanism makes public decision x0,t 2 X0,t , transfers yi ,t 2 R to
each i

Histories: θt = (θ1, . . . , θt ) 2 Θt = ∏t
τ=1 ∏

i
Θi ,t ; similarly x t 2 X t

Technology: θt � νt
�
�jx t�1, θt�1

�
Preferences: Agent i�s utility

∞

∑
t=1

δt
�
ui ,t (x t , θ

t ) + yi ,t
�

0 < δ < 1
ui ,t uniformly bounded
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Direct Mechanisms

Measurable decision plan: χt : Θt ! Xt

χ0,t are prescribed public decisions
χi ,t are recommended private decisions for agent i � 1

Decision plan induces stochastic process µ[χ] on Θ
Transfers: ψi ,t : Θt ! R; PDV Ψi (θ) = ∑∞

t=0 δtψi ,t (θ
t )

Measurable, uniformly bounded
Budget balance: ∑i ψi ,t (θ) � 0

Information Disclosure: All announcements are public

Disclosing less less would preserve equilibrium as long as agents can
still infer recommended private decisions
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Strategies

Agent i�s strategy de�nes

Reporting plan βi ,t : Θti �Θt�1�i ! Θi ,t
Private action plan αi ,t : Θti �Θt�i ! Xi ,t

Strategy also de�nes behavior following agent�s own deviations, but
this is irrelevant for the normal form

Strategy is truthful-obedient if for all θt ,

βi ,t (θ
t
i , θ

t�1
�i ) = θi ,t ,

αi ,t (θ
t ) = χi ,t

�
θt
�
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Balanced Team Mechanism

Ui (χ�(θ), θ) = ∑∞
t=1 δtui ,t

�
χt

�
θ̃
t
�
, θ̃
�

E¢ cient decision χ�: maxχ E
µ[χ]

θ̃
[∑i Ui (χ

�(θ), θ)]
Balanced Team Transfers:

ψBi ,t (θ
t ) = γi ,t

�
θi ,t , θ

t�1�� 1
I � 1 ∑

j 6=i
γj ,t (θj ,t , θ

t�1), where

γj ,t (θj ,t , θ
t�1) = δ�t

0@ E
µjt [χ]jθj ,t ,θt�1
θ̃

�
∑i 6=j Ui (χ

�(θ), θ)
�

�E
µt [χ]jθ

t�1

θ̃

�
∑i 6=j Ui (χ

�(θ), θ)
�
1A

Theorem
Assume independent types: conditional on x t0 , agent i�s private
information θti , x

t
i does not a¤ect the distribution of θj ,t , for j 6= i . Also

assume private values: uj ,t
�
x t , θt

�
does not depend on θti , x

t
i for all t,

i 6= j . Then balanced team mechanism is BIC.
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Balancing: Example

In initial example:

�US
�
χ(θ̂), θ̂S

�
= c

�
χ1(θ̂S ), θ̂S

�
+ δc

�
χ2(θ̂S , θ̂B ,2), θ̂S

�
+ δ2c

�
χ3(θ̂S , θ̂B ,3), θ̂S

�
γB ,3(θ̂B ,2, θ̂B ,3, θ̂S ) = �c

�
χ3(θ̂S , θ̂B ,3), θ̂S

�
+Eθ̃B ,3

�
c
�
χ3(θ̂S , θ̃B ,3), θ̂S

��� θ̂B ,2
�

γB ,2(θ̂B ,2, θ̂S ) = �c
�
χ2(θ̂S , θ̂B ,2), θ̂S

�
� δEθ̃B ,3

�
c
�
χ3(θ̂S , θ̃B ,3), θ̂S

��� θ̂B ,2
�

+Eθ̃B ,2,θ̃B ,3

�
c
�
χ2(θ̂S , θ̃B ,2), θ̂S

�
+ δc

�
χ3(θ̂S , θ̃B ,3), θ̂S

��
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Balancing: Proof Sketch

Let Ψj
�
θ̃
�
= ∑i 6=j Ui (χ

�(θ), θ) , pv of j�s payments:

δtγj ,t (θ̂
t
j , θ̂

t�1
�j ) = E

µjt [χ]jθ̂j ,t ,θ̂
t�1

θ̃

�
Ψj
�
θ̃
��| {z }

γ+j ,t (θ̂j ,t ,θ̂
t�1
)

�E
µt [χ]jθ̂

t�1

θ̃

�
Ψj
�
θ̃
��| {z }

γ�j ,t (θ̂
t�1
)

Two terms are expectations of the same function Ψj
�
θ̃
�

γ�j ,t (θ̂
t�1
) uses only period t � 1 information

γ+j ,t (θ̂j ,t , θ̂
t�1
) uses, in addition, agent j�s period-t report

For any deviation by agent i , if the others are truthful-obedient:

Claim 1: Expected present value of γi ,t equals, up to a constant, that
of ψi ,t
Claim 2: Expected present value of γj ,t is zero for each j 6= i
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�
θ̃
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Proof of Claim 2

For any possible deviation of agent i , expected present value of γj ,t is
zero for each j 6= i :
θj ,1 θ�j ,1 θj ,2 θj ,t

. . . . . .

-γ�j ,1 γ+j ,1 -γ�j ,2 γ+j ,2 -γ�j ,t γ+j ,t

 δγj ,1!  δ2γj ,2!  δtγj ,t!

Independent types ) agent i�s private history
�
θti , x

t�1
i

�
does not

a¤ect beliefs over θ̃j ,t

If agent j is truthful, the expectation of γ+j ,t (θ̃j ,t , θ̂
t�1
) before time t

equals γ�j ,t (θ̂
t�1
), for any report history θ̂

t�1

LIE: ex ante expectation of γj ,t equals zero
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Proof of Claim 1

For any possible deviation of agent i , expected present value of γi ,t
equals, up to a constant, that of ψi ,t :

θi ,1 θ�i ,1 θ�i ,t�1 θi ,t

. . . . . .

-γ�i ,1 γ+i ,1 -γ�i ,2 γ+i ,t�1 -γ�i ,t γ+i ,t

 = 0!  = 0!

Independent types ) agent i�s private history
�
θti , x

t�1
i

�
does not

a¤ect beliefs over θ̃�i ,t
If the others are truthful, agent i�s time-t expectation of
γ�i ,t+1(θ̃�i ,t , θ̂i ,t , θ̂

t�1
) equals γ+i ,t (θ̂i ,t , θ̂

t�1
) for any θ̂i ,t , θ̂

t�1

LIE: the two terms have the same ex ante expectations as well

Thus, expectation of
t

∑
τ=1

δτγ̃i ,τ equals to that of γ̃+i ,t � γ̃�i ,1

γ�i ,1 is una¤ected by reports; γ̃+i ,t ! Ψi
�
θ̃
�
as t ! ∞
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Decentralized Games (No External Enforcer)

In each period t = 1, 2, ...

1 Each agent i privately observes signal θi ,t
2 Agents send simultaneous reports
3 Each agent i chooses private action xi ,t
4 Each agent i chooses public action x0,i ,t , makes public payment
zi ,j ,t � 0 to each agent j

) Public action x0,t = (x0,i ,t )
N
i=1, total transfer

yi ,t = ∑
j
(zj ,i ,t � zi ,j ,t ) to agent i (budget-balanced)

Markovian Assumptions:

Finite action, type spaces, the same in each period

Markovian type transitions: νt
�

θt jθt�1, x t�1
�
= ν̄ (θt jθt�1, xt�1)

Stationary separable payo¤s ui ,t
�
x t , θt

�
= ūi (xt , θt )

) 9 a �Blackwell policy�χ� - a Markovian decision rule that is
e¢ cient for all δ close enough to 1, for any starting state
Can we sustain χ� in PBE?
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Implement the Balanced Team Mechanism

When no publicly observed deviation, make payments

zi ,j ,t =
1

I � 1γj ,t (θ
t
j , θ

t�1
�j ) +Ki

=
1

I � 1 ∑
k 6=j

∞

∑
τ=t

δτ�t

0@ E
µjt [χ

�]jθtj ,θt�1�j
θ̃

�
ūk
�
χ�
�
θ̃τ

�
, θ̃τ

��
�E

µt [χ
�]jθt�1

θ̃

�
ūk
�
χ�
�
θ̃τ

�
, θ̃τ

��
1A+Ki

Can we prevent public deviations (=�quitting�) for any history?

Can think of this as joint IC-IR constraints

Problem: transfers may be unbounded as δ! 1.

But: with limited persistence of θ̃, the two expectations may be close
as τ ! ∞
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ūk
�
χ�
�
θ̃τ

�
, θ̃τ

��
�E

µt [χ
�]jθt�1

θ̃

�
ūk
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Sustaining E¢ ciency

Theorem
Take the Markov game with independent private values, which has a
zero-payo¤ belief-free static NE. Suppose that a Blackwell policy χ�

induces a Markov process with a unique ergodic set (and a possibly empty
transient set), and that the ergodic distribution gives a positive expected
total surplus. Then for δ large enough, χ� can be sustained in a PBE
using Balanced Team Transfers.
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� Dynamic Games

�In decentralized games, actions and transfers have to be self-
enforcing; not commitment mechanism is available to the agents

�In many games, transfers are not available

�What is the relationship between the outcomes that can be at-
tained WITH commitment and transfers, and what can be at-

tained without?

�When can e¢ ciency be sustained as an eqm?

�What do equilibria look like for di¤erent discount factors?

�E¢ ciency includes BB

2



� Literature in Microeconomics on Dynamic Games and Contracts

�Collusion: Athey and Bagwell (series of papers)

�Repeated Trade: Athey and Miller

�Relational Contracts: Levin, Rayo

�Continuous time models, principal agent: Sannikov and coauthors

�Cost of ex post as opposed to Bayesian equilibrium: Miller

� Literature in Dynamic Public Finance, Macro

�Amador, Angeletos, andWerning; Tsyvinski; Athey, Atkeson, and
Kehoe; others

3



� Focus Today: Hidden Information

�Hidden actions impt, techniques and applications often di¤erent

�Auctions, collusion, bilateral or multilateral trade, public good
provision, resource allocation, favor-trading in relationships, mu-

tual insurance

� Contracts, Games, and Games as Contracts

4



�Mechanism Design Approach to Dynamic Games

�In static theory, we are familiar with mechanism design approach
to analyzing games such as auctions

�Use tools such as envelope theorem, revenue equivalence, etc. to
characterize equilibria

�Analyze constraints

�Take this approach to dynamic games

�Combine dynamic programming and mechanism design tools

�Frontier of current research: fully dynamic games (not repeated)
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A Toolkit for Analyzing Dynamic Games and Contracts

� Abreu-Pearce-Stacchetti and dynamic programming

� The mechanism design approach to repeated games with hidden in-
formation

� Sustaining e¢ ciency with transfers

� The folk theorem without transfers

� Dynamic Programming for Dynamic Games

6



Analyzing Repeated and Dynamic Games with Hidden Information

�Model the game/contract in extensive form

�Dynamic games�see Battiglini (2005), Athey and Segal (2007)

�Cumbersome to specify full strategy space and optimize over it

� Use APS/Mechanism Design combination

�Applicability of results with the right assumptions

�Can apply body of knowledge for hidden info games
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A Dynamic Game with Time-Varying Hidden Information

� Players i = 1; ::; I

� Time t = 1; ::; T (special cases: T = 1; T =1)

� Superscript/subscript notation: given ((yi;t)Tt=1)Ii=1;

yt = (yi;t)
I
i=1; yi = (yi;t)

T
t=1; y

t = (yt0)
t
t0=1.

� Type spaces �i;t � Rn, random variables ~�i;t with realizations �i;t:

� Communication amoung players: mi;t 2Mi;t

� Decisions Xi;t � Rn:

� Transfer from player j to player i :
yj;i;t � 0; let yi;t =

P
j yj;i;t � yi;j;t:

�Some models rule out transfers, e.g. collusion
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� History has two components:

�Public history ht�1 = (xt�1;mt�1; yt�1); private histories �t�1

� Timeline in period t:

�Types realized (�t)

� History potentially a¤ects distributions: Ft(�t;xt�1; �t�1):
�Players communicate (mt)

�Players simultaneously make decisions (xt) and send transfers (yt)

� Note: can consider models without communication in this framework

�Messages can be contentless

�Athey-Bagwell (2001) show this can relax incentive constraints

9



Approach: Model Game with Mechanism Design Tools

� De�ne a recursive (direct revelation) mechanism

�Replace mapping from types to actions with reporting strategy

�Many games of interest have single crossing property, already re-
stricted to monotone strategies

� Specify appropriate constraints

��On-schedule�and �o¤-schedule�deviations

�Comparison between decentralized game and recursive mechanism

� Game has add�l constraints, action space unrestricted
�With patience, these can be satis�ed
� Game without transfers must deal with restrictions on continu-
ation values

10



� The role of patience

�Static mechanism that satis�es BIC, EPBB, IR may not be eqm
in decentralized game with low patience

�Mechanism provides commitment
�Static mechanism that satis�es BIC, EPBB, fails IR may be eqm
in game with high patience

� Future gain from relationship relaxes participation constraints

� Independent (over time) types or perfectly persistent types

�Use static tools

�More general dynamics

�Contingent, multi-stage deviations

�Transfers and continuation equilibria not perfect substitutes

11



Approach Here: Recursive Mechanisms

� Athey and Bagwell (2001), Athey, Bagwell, and Sanchirico (2004)

�Miller (2005) sets out approach for general model

� Idea: use APS approach together with mechanism design tools

� Start by focusing on stationary (repeated) games

�For appropriately selected constraints, a �self-generating�recur-
sive mechanism will be a PPE

�A PPE can be written as a recursive mechanism

� Apply tools from static mechanism design theory

12



The Recursive Mechanism

� Stage Mechanism

�Action plan for each player: � : �t! X

�Transfer plan from i to j,  i;j : �t! R+;  i =
P
j  j;i �  i;j

�Continuation value function w : �t! RI :

�Let 
 = (�;  ; w)

Ex post utility: ui(�̂t; �i;t; 
) = �i(�(�̂t); �i;t) +  i(�̂t) + �wi(�̂t)

Interim utility: �ui(�̂i;t; �i;t; 
) = E~��i;t[ui((�̂i;t;
~��i;t); �i;t; 
)]

� Recursive Mechanism: hV; f
(v)gv2V ; v0i

�A set V An initial condition v0 2 V
�A set of stage mechanisms f
(v)gv2V

13



Constraints

� (Bayesian, Interim) IC:
�ui(�i;t; �i;t; 
) � �ui(�̂i;t; �i;t; 
) for all �̂i;t 2 �i;t

� IR(p0)

��Outside option�: punishment equilibrium with payo¤s p0.

�Could be static Nash, �Nonparticipation.�

�For simplicity, assume informative communication.

�ui(�i;t; �i;t; 
) � sup
�̂i;t

(
E~��i;t

"
sup
xi

 
�i(xi; ��i(�̂i;t; ~��i;t); �i;t)
+
P
j  j;i(�̂i;t;

~��i;t)

!#)
+�p0;i:

�More generally, take expectations given messages. See Athey
and Bagwell (2001) for more discussion of alternative IRs.

� Note assn about transfers and actions simultaneous.

14



Self-Generating Recursive Mechanism

� De�ne the set of attainable payo¤s to be

V = co

8><>:v 2 RI : 9
 s.t. Pi vi =
P
i

E~�t
h
ui(~�t; ~�i;t; 
)

i
1� �

9>=>; :
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� For V � V ; p0 2 RI ; de�ne T (V ; p0) to be the set of v 2 RI for
which there exist stage mechanisms 
(v) = (�;  ; w)(v) whereby

1. Promise-keeping: E~�t
h
ui(~�t; ~�i;t; 
(v))

i
= vi:

2. Coherence: w(v) : �t! V:

3. Best response: 
(v) satis�es IC and IR(p0).

� V is self-generating relative to p0 if V � T (V ; p0):

�Note: full set is V [ p0: Worst eqm not our focus; can extend to
address this.

� hV; f
(v)gv2V ; v0i is self-generating relative to p0 (SGRM(p0)) if:
V is self-generating relative to p0 and,

for each v 2 V; (1)-(3) hold for 
(v) and p0.

16



Recursive Mechanism as a Tool for Analyzing Decentralized PPE

Proposition 1 Fix �. Suppose p0 is a PPE and consider V >> p0:

(i) If V is a set of PPE payo¤s with informative communication, then

there exists v0 2 V; f
(v)gv2V such that hV; f
(v)gv2V ; v0i is a SGRM(p0):
(ii) Suppose that hV; f
(v)gv2V ; v0i is a SGRM(p0). Then V is in the
set of PPE payo¤s.

� Proof: SeeMiller (2005) (does folk theorem; adapt arguments). Anal-
ogous to APS. Have to verify that constraints deter relevant devia-

tions.

� If interested in set V of PPE payo¤s w/o informative communication,
modify IRs to get corresponding result.

� IR constraints imply that deviating �o¤-schedule�is not desirable.

17



Transforming to a Static Problem: The Case with Transfers

� Recall

ui(�̂t; �i;t; 
) = �i(�(�̂t); �i;t) +  i(�̂t) + �wi(�̂t):

�With independent types, value for future play is the same for all
types

�Transfers and continuation values completely fungible

�WLOG, can consider stationary mechanisms (Levin, 2003)

� Then, consider static mechanism design problem with bounds on

transfers imposed by IR

18



Folk Theorem with Transfers

Proposition 2Given �; suppose there exist EPBB, uniformly bounded,
IC transfers for �, and thatX

i

E[�i(�(�t); �i;t)] >
X

p0;i:

Then for � su¢ ciently large, there exists a SGRM(p), hV; f
(v)gv2V ; v0i
that is stationary, whereX

i

v0;i =
X
i

E[�i(�(�t); �i;t)]:

� Result says that if policy can be implemented with commitment, it
can be self-enforcing for su¢ ciently patient agents

� See Cremer, d�Aspremont, Gerard-Varet (2003) for su¢ cient condi-
tions; see also Miller (2005).
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� As � grows, value of future eventually outweighs transfers. Indepen-
dent future key.

20



Transforming to a Static Problem: The Case without Transfers

� Continuation values can mimic role of transfers, but for �xed �,

Pareto frontier of V is not in general linear

� Tradeo¤ between using variation in continuation values to provide
incentives, and Pareto e¢ cient continuation values

��E¢ ciency today v. e¢ ciency tomorrow�

�Finding: Sacri�ce e¢ ciency today

� Details of model determine shape of frontier of V

�Multiplicity of e¢ cient outcomes: partial linearity

� Approach (see Athey and Bagwell (2001)): start with large V , char-
acterize T (V )

�Analogous to static problem with restricted transfers

21



Folk Theorem without Transfers

� Fudenberg, Levine and Maskin (1994), Miller (2005)

�Small changes in future per-period utility mimic transfers

�FLM make unnecessary assumptions: independent, �nite types

� They focus on hidden action models and so don�t look for most
general conditions

�Miller (2005) generalizes to continuous types, correlated values

� Key elements of argument

�Angle of supporting hyperplanes doesn�t matter generically

�Average period payo¤s (outside set) and hyperplane (inside set)

�As � ! 1; length of hyperplane shrinks fast enough

�Nothing about what to do for �xed �

22



FIGURE: Supporting Hyperplanes
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Applications

� Ongoing Relationships

�Time-varying individual costs and bene�ts to acting, i.i.d. private
information

�Restrictions on monetary transfers

� Examples

�Colluding �rms, i.i.d. cost/inventory shocks

�Public good provision

� Families/villages Organizations

� Legislatures Academic departments

�Policy games (government is privately informed)

24



� Questions about Collusion

�Response of collusive behavior to institutional setting

�E¤ects of anti-trust policy (Restrictions on communication, side-
payments)

�Market design: info. about indiv. bids and identities

�Institutional design: industry assoc., smoke-�lled rooms

� Central Tradeo¤s

�Productive e¢ ciency requires low-cost �rm serves market

�Firms like market-share, incentive to mimic low-cost �rm

�Need low prices or future �punishment�with high market-share

�Future price wars v. �future market-share favors�

25



Asymmetric Collusion

� Setup

�2 �rms produce perfect substitutes

�Unit mass of consumers, reservation price r

�2 cost types: �i 2 f�L; �Hg; Pr(�i = �j) = �j:

Case: �L > 1=2:

� Firms...

�may split the market unevenly; details not imp�t.

�may not charge di¤erent prices to di¤erent consumers.

�communicate prior to producing (see Athey and Bagwell (2001)
for analysis of communication)

26



Summary of Ideas for Asymmetric Eq�a

� A �rst best scheme, always price at r

�Eqm described by two �states�

�Each period, announce types

�State x: low cost �rm serves market, but �rm 2 serves most of

market if �rms have same cost

� If (H;L), switch to state y, oth. return to x
�State y: low cost �rm serves market, but �rm 1 serves most of

market if �rms have same cost

� If (L;H); switch to state x, oth. return to y

� Paper: shows that �rst-best scheme can work if patient enough that
di¤. betw. x and y provides su¤. incentives; if less patient shows

similar schemes with partial prod. e¤. are optimal.

27



Illustration of First-Best equilibrium
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A Linear Self-Generating Set with First-Best Pro�ts

� Goal: Compute a critical discount factor above which �rst-best prof-
its can be attained in every period.

�Requires linear, �self-generating�set with slope �1 :

[(x; y); (y; x)]

�Two parts.

��Adding Up�: First, ignore IC-O¤. Is it possible to have linear
self-generating set with full e¢ ciency?

� Need to implement (x; y) using vjk 2 [(x; y); (y; x)]:
� Future looks brighter than today for �rm 1, and enough brighter
when �rm 1 has high cost to satisfy IC-On.

29



� Does it all �add up�?
�Second, when are IC-O¤�s cleared?.

Proposition 3 Suppose that r � �H < �H � �L: Then, for all � 2
(�FB; 1], there exist values y > x > 0 such that x+ y = 2�FB=(1� �),
and the line segment [(x; y); (y; x)] is �self-generating�and in the set of

PPE values, V �.
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Persistent Types

� See Cole and Kocherlakota, Athey and Bagwell on persistent types
and extending recursive mechanism design approach

� Two-period sophisticated rotation

�Produce today, give up market share tomorrow

�Not very e¤ective with persistent types

� First-best example

�Extends to persistent types

�Keep track of beliefs as state variables

�In a fully revealing equilibrium, all that matters is last period�s
state
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� As persistence grows relative to patience, rigid pricing approximately
optimal with log-concavity

�Cannot do e¢ cient transfers, so pooling is optimal
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FIGURE: First-Best Equilibrium with Persistent Types
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Summing Up Dynamic Games

� Bring together mechanism design and dynamic programming to an-
alyze repeated and dynamic games

� Apply tools from static literature

� Generalize to incorporate interesting dynamics

�Today: Serial correlation

�Learning-by-doing, experimentation, information gathering (Athey-
Segal)

�Maintaining budget account (Athey-Miller)

� E¢ ciency possible in wide range of circumstances

� Pooling is optimal for agents when limited instruments for providing
incentives
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