Part II: Bidding, Dynamics and Competition

Jon Feldman
S. Muthukrishnan
Campaign Optimization
Budget Optimization (BO): Simple

- **Input:**
 - Set of keywords and a budget.
 - For each keyword, (clicks, cost) pair.
 - Same auction all day, same competitors, bids.

- **Model:**
 - Take the keyword or leave it, binary decision.
 - Maximize the number of clicks, subject to the budget.

- **Output:**
 - Subset of keywords.
Well-known Knapsack problem.

- Each KW is an *item*, cost = *weight*, clicks = *value*. Total budget = weight knapsack can carry.

NP hard in general.

Algorithm:

- Repeatedly take item largest value/weight (clicks/cost), or lowest cost per click. Last item will be fractional. Provably optimal.

- Undergrad algorithms: Sort by density=clicks/cost and be greedy.
BO: Multiple Slots

- **Input:**
 - For each keyword, multiple (clicks, cost) pairs.

- **Generalized Knapsack:**
 - Same item can be picked in different combinations.
 - NP hard in general.
Multiple Slots BO: Some Observations

- **Convex Hull.** Taking convex combination will dominate other points.

- Can treat each delta segment separately.
Consider each delta segment separately.

Solve standard Knapsack as before.

- Feasible since taken in order of decreasing clicks/cost.
- Provably optimal.

Message:

- Algorithm produces x
- Taking all delta segments (marginal) with cost-per-click $\leq x$ is the optimal solution.
Profit Optimization (PO)

- For each keyword (clicks, cost):
 \[\text{profit} = \text{number of clicks} \times \text{value} - \text{total cost}. \]

- Profit Optimization: Maximize total profit.

- Take all profitable keywords. Optimal algorithm. No fractional issues.

- This algorithm targets marginal \(\text{cpc} = \text{value}. \)
PO with Budget

- Say budget B.
- Solve PO without B.
 - If spend $< B$, done.
 - Else, you will spend B. Then solve the BO problem given this B.

- [Homework] n KWs, k versions per KW. Preprocess them. Query is (V,B) or only V or only B. Solve BO or PO problems.
- Can be done in $O(\log (nk))$ time. This data structure is landscapes.
Conversion Optimization.

- Given (conversions, cost), same algorithmics as above with cpc control knob.

Maximize ROI = value/cost.

- Get the 1 cheapest click!

Improve ROI:

- Bidding smartly
- Improve the creative.
- Change KW set,…
Target Positions

- Why?
- How?
 - Auction by auction.
 - Proxy bidding to average position target.
- BO/PO with Position Preference.
 - Simple: BO. Given budget B, for each KW, expected position < k.
Homework

Given \(n \) keywords with \(k \) versions each find bids for keywords such that overall average CPC is at most \(x \), and the number of clicks is maximized.

Hint:
- Algorithm will still proceed in increasing order of marginal CPCs.

Formally,
- Take increasing order of \(\frac{\text{DeltaCost}_i}{\text{DeltaClick}_i} \).
- Claim: \(\frac{\text{sumDeltaCost}_i}{\text{sumDeltaClick}_i} \) is also increasing. Hence stop when you get target average CPC.
3 Examples:
- Keyword Interaction
- Stochastic Information
- Broad Match
Keyword Interaction, BO Reexamined

- Keyword’s interact.
 - World is more complex.
 - Competitors drop in and out.
 - Multipliers change, traffic prediction is hard, …
 - Landscape functions are now complicated.
Let C be the number of clicks obtained by an Omniscent bidder.

- there exists a bid b such that $\text{clicks}(\text{uniform}(b)) \geq C/2$.

- There exists a distribution d over two bids such that $\text{clicks}(\text{uniform}(d)) \geq (1-1/e) C$.

Better in practice and a very useful heuristic.

Feldman, Muthu, Pal, Stein. EC 07.
Bid $h(r)$ on each query and

- get $\geq r$ clicks.
- spend $\leq r h(r)$.

With some work, r clicks at cost $rh(r)$.
Bid $h(C/2)$ on each query and
• get $C/2$ clicks.
• spend $C/2 \cdot h(C/2) \leq \text{Budget}$
distribution: \(\alpha_1 + \alpha_2 = 1 \)

budget = \(\alpha_1 b_1 f(b_1) + \alpha_2 b_2 f(b_2) \)

max. clicks = \(\alpha_1 b_1 + \alpha_2 b_2 \)
We can make up examples, so no profit approximation.

Theorem: Say we can get profit P with value per click of V. Consider an uniform bidder with value $eV/(e-1)$, gets profit at least P.

Proof.

- cl_o, co_o is what OPT gets and gives P_o.
- Uniform theorem says there exists $cl_u=(e-1)/e$ cl_o and $co_u < co_opt$.
- Thus, if someone has value $Ve/(e-1)$ then, $profit_u = V e/(e-1) cl_u - co_u = V cl_o - co_o = profit_o$.

Open:

- Position, Average CPC, etc. bidding when keywords have interaction.
Stochastic BO

- (click, cost) functions are random variables with dependencies.
- Three popular stochastic models:
 - Proportional
 - Independent
 - Scenario
- Variety of approximation algorithms known.

Muthu, Pal, Svitkina WINE07.
Each scenario gives (click, cost) distribution for keywords.

There is a probability distribution over scenarios.

Finding a bidding strategy to maximize expected clicks:

- scaled by how much one overshoots the budget.

Polylog approx, log hardness of approx.

Dasgupta, Muthu 09.
Advertisers have to choose how to bid **Exact** or **Broad**.

- Because of impedance mismatch between user queries and bidding language for advertisers.

Key technical difficulty in BO with broad match.

- Bid on query/keyword q applies implicitly to keywords eg., q'.
- While value from q may be large, value from q' may be even negative!
Bidding Broad

- Pick subset of queries to bid broad to maximize profit.
 - Polynomial time algorithms, even for budgeted versions.
- Bid on exact or broad on keywords to maximize profit.
 - Hard to even approximate (independent set).
 - $O(1)$ approx if profit >>> cost.

Even-Dar, Mansour, Mirrokni, Muthu, Nedev WWW 09.
More general problem is to combine
- Keyword and match type choice
- Target ad delivery and scheduling metrics
- Learn CTRs
- Optimize clicks, conversions, profit, brand effectiveness, ...
- For given budget.

Alternatively, think at higher level of abstraction of supply curve: (cost, value).
- The knobs like max cpc bids are just implementations.
- For each budget, Auctioneer can run BO, PO, etc.
- Advertiser needs to just pick a point.
Advertisers have to optimize across channels.
- Across search engines.
 - YMGA problem.
- Across search and display.
- Across online and offline.

Formal models will be useful.
Dynamics
Bidding Dynamics

How should advertisers bid?

- Vickrey-Clarke-Groves (VCG), Truthfully.
- Reality:
 - Other auctions (e.g., Generalized Second Price, or GSP) and strategies in repeated auctions.
 - Portfolio of auctions.
- Dynamics becomes important.
GSP: Static Game

- There exists an GSP equilibrium that has prices identical to VCG. It is the cheapest envy-free equilibrium.

- GSP with bidder-specific reserve prices. There exists an envy-free equilibrium, even though we don’t have local envy-free property.

E. Even-Dar, J. Feldman, Y. Mansour and Muthu, WINE08.
GSP: Dynamic Game

- Balanced Bidding (BB): Target the slot which maximizes the utility, and choose bid so you don’t regret getting the higher slot at bid value.

- If all bidders follow BB, there exists a unique fixed point. Then revenue is VCG equilibrium revenue.

- Asynchronous, random bidders with BB converges to this fixed point with prob. 1 in poly \((k^{2^k}, \max v_i, n) \) steps.

FP, GSP Dynamics: Multiple Keywords

- Budget limited bidders with multiple keywords.
- Bidding such that the marginal return on investment is same for all keywords.
- Equilibrium analysis
 - To avoid cycling, need perturbation of bids.
 - With first price and uniform bidding, prices, utilities and revenue converge to Arrow-Debreu market equilibrium.

Competition

- A lot of auction design really deals with competitive behavior.

- Advertisers seem to ask about individual competitors.
 - Monitor for bids, quality, brand words,
 - Who are the competitors?
 - Micro competitors.
 - Why?
 - Relative bidding
 - Malicious bidding.

Y. Zhou and R. Lukose, WSAA06.

Summary

- [Jon] The Knobs.
- [Muthu] Controling the knobs wrt bidding.
 - Optimization: BO, PO, XO, …
 - Dynamics
 - Competition
- Rest
- Acknowledgements:
 - Martin Pal
 - Vahab Mirrokni, Eyal Even-Dar, Yishay Mansour, Hal Varian, Noam Nisan.
 - Uri Nadav, Cliff Stein, Bhaskar Dasgupta, Zoya Svitkina.
 - Team