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Many applicationsMany applications
• People/agents often have conflictingPeople/agents often have conflicting 

preferences, yet they have to make a 
joint decision
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Applications

• Multi-agent systems [Ephrati and Rosenschein 91]

• Recommendation systems [Ghosh et al. 99]

M h i• Meta-search engines [Dwork et al. 01]

• Belief merging [Everaere et al 07]• Belief merging [Everaere et al. 07]

• Human computation (crowdsourcing)p ( g)

• etc.
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A burgeoning areaA burgeoning area

R tl h b d i l t f tt ti• Recently has been drawing a lot of attention
– IJCAI-11:           15 papers, best paper
– AAAI-11:            6 papers, best paper
– AAMAS-11:       10 full papers, best paper runner-up
– AAMAS-12 9 full papers, best student paper
– EC-12:       3 papersp p

• Workshop: COMSOC Workshop 06, 08, 10, 12
Courses taught at Technical University Munich (Felix• Courses taught at Technical University Munich (Felix 
Brandt), Harvard (Yiling Chen), U. of Amsterdam (Ulle
Endriss)Endriss)
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Flavor of this tutorialFlavor of this tutorial

Hi h l l bj ti f• High-level objectives for
– design

– evaluation

– logic flow among research topicsg g p

“Give a man a fish and you feed him for a day. 

Teach a man to fish and you feed him for a lifetime ”Teach a man to fish and you feed him for a lifetime.

-----Chinese proverb

• Plus some concrete examples of research 
directions
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OutlineOutline

1. Traditional Social Choice30 min

2. Game-theoretic aspects NP
45 min p NP-

Hard

3. Combinatorial voting45 min

4 MLE approaches
NP-
Hard45 min
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OutlineOutline

2. Game-theoretic aspectsp

3. Combinatorial voting

4 MLE approaches
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How to design a good social 
h i ( ti ) l ?What is “good”?choice (voting) rule? What is good ?
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Objectives of social choice rulesObjectives of social choice rules

• OBJ1: Compromise • OBJ2: Reveal the “truth”• OBJ1: Compromise 
among subjective 
preferences

• OBJ2: Reveal the truth

preferences

1 T diti l S i l Ch i 4 MLE h
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Common voting rules
(what has been done in the past two centuries)
• Mathematically, a voting rule is a mapping from {All y g pp g {

profiles} to {outcomes}
– an outcome is usually a winner, a set of winners, or a ranking
– m : number of alternatives (candidates)

– n : number of voters

P iti l i l• Positional scoring rules
– A score vector s1,...,sm

For each vote V the alternative ranked in the– For each vote V, the alternative ranked in the 
i-th position gets si points

– The alternative with the most total points is the winnerp
– Special cases

• Borda, with score vector (m-1, m-2, …,0)
• Plurality, with score vector (1,0,…,0) [Used in the US]



An exampleAn example

• Three alternatives {c c c }• Three alternatives {c1, c2, c3}
• Score vector (2,1,0) (=Borda)
• 3 votes,                         

1 2 3c c c  c c c  c c c 1 2 3c c c  2 1 3c c c  3 1 2c c c 

2        1        0 2        1        0 2        1        0

• c1 gets 2+1+1=4, c2 gets 1+2+0=3, 
c3 gets 0+0+2=2

• The winner is c1e e s c1



Plurality with runoffPlurality with runoff

• The election has two rounds
– In the first round all alternatives except theIn the first round, all alternatives except the 

two with the highest plurality score drop out
– In the second round, the alternative that is 

preferred by more voters wins

• [used in North Carolina State]

10 7 6 3

a > b > c > da > > d  d > a > b > c  d > a            c > d > a >bd > a b > c > d >ad >a
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Single transferable vote (STV)
• Also called instant run-off voting or 
Single transferable vote (STV)

g
alternative vote

• The election has m 1 rounds in each• The election has m-1 rounds, in each 
round, 
– The alternative with the lowest plurality e a e a e e o es p u a y

score drops out, and is removed from all of 
the votes
The last remaining alternative is the winner– The last-remaining alternative is the winner

• [used in Australia and Ireland]

10 7 6 3

a > b > c > da > c > d  d > a > b > c  d > a >       c            c > d > a >bc > d > a b > c > d >ac > d >aa > c   a > c   c >        a   c >       a  
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KemenyKemeny

• Kendall’s tau distance 
– K(V,W)= # {different pairwise comparisons}K(V,W)  # {different pairwise comparisons}

K(  b c a , a b c ) = 112

• Kemeny(P)=argminW K(P,W)=argminW

Σ K(P W)ΣV PK(P,W)

• [has an MLE interpretation]
15



and many others…and many others

• Approval, Baldwin, Black, Bucklin, 
Coombs Copeland Dodgson maximinCoombs, Copeland, Dodgson, maximin, 
Nanson, Range voting, Schulze, Slater,
ranked pairs, etc…
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• Q: How to evaluate rules in terms of• Q: How to evaluate rules in terms of  
compromising subjective preferences?compromising subjective preferences?

• A: Axiomatic approach
– Preferences are ordinal and utilities might not 

be transferable 
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Axiomatic approachpp
(what has been done in the past 50 years)

Anonymity: names of the voters do not matter• Anonymity: names of the voters do not matter
– Fairness for the voters

• Non-dictatorship: there is no dictator, whose top-ranked alternative is 
always the winneralways the winner

– Fairness for the voters
• Neutrality: names of the alternatives do not matter

F i f th lt ti– Fairness for the alternatives
• Condorcet consistency: if there exists a Condorcet winner, then it must win

– A Condorcet winner beats all other alternatives in pairwise elections
C i t if ( )∩ ( ) th ( ) ( )∩ ( )• Consistency: if r(P1)∩r(P2)≠ , then r(P1 P2)=r(P1)∩r(P2)

• Strategy-proofness: no voter can cast a false vote to improve the outcome 
of election
E t t i d t i ti i i P• Easy to compute: winner determination is in P

– Computational efficiency of preference aggregation
• Hard to manipulate: computing a beneficial false vote is hard

18
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Which axiom is more important?Which axiom is more important?
Condorcet Polynomial-timeCondorcet 

consistency Consistency Polynomial-time 
computable

Positional 
i l N Y Yscoring rules

plurality with 
runoff N N Y

STV N N Y

Kemeny Y N N

Ranked pairs Y N Y

• Some of them are not compatible

Ranked pairs Y N Y

19

Some of them are not compatible 
with each other



An easy factAn easy fact
Thm For voting rules that selects a single• Thm. For voting rules that selects a single 
winner, anonymity is not compatible with 
neutralityneutrality
– proof:

> >

> >

≠W.O.L.G.

20
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Another easy fact 
[Fishburn APSR 74]
• Thm. No positional scoring rule is 
[Fishburn APSR-74]

Condorcet consistent: 
– suppose s1 > s2 > s3

is the Condorcet winner>       >3 Voters is the Condorcet winner

>       >2 Voters : 3s1 + 2s2 + 2s3<

>       >1 Voter : 3s1 + 3s2 + 1s3

21>       >1 Voter



Not So Easy factsNot-So-Easy facts

• Arrow’s impossibility theorem
– Google it!g

• Gibbard-Satterthwaite theorem
– Next sectionNext section

• Axiomatic characterization
– Template: A voting rule satisfies axioms A1 A2 A2 ifTemplate: A voting rule satisfies axioms A1, A2, A2 if 

and only if it is rule X
– If you believe in A1 A2 A3 altogether then X is y g

optimal
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Food for thoughtFood for thought

• Can we quantify a voting rule’s satisfiability
of these axiomatic properties?of these axiomatic properties?
– Tradeoffs between satisfiability of axioms

– Use computational techniques to design new 
voting rulesvoting rules

• CSP to prove or discover new impossibility 
theorems [Tang&Lin AIJ-09]
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OutlineOutline

1. Traditional Social Choice

15 i

2. Game-theoretic aspects

15 min

p

3. Combinatorial voting

4 MLE approaches
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OutlineOutline

1. Traditional Social Choice

3. Combinatorial voting

4 MLE approaches
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Strategic behaviorStrategic behavior 
(of the voters)(of the voters)

• In most of work before 1970’s it wasIn most of work before 1970 s it was 
assumed that voters are truthful

• However, sometimes a voter has 
i ti t li t k th iincentive to lie, to make the winner more 
preferable p e e ab e
– according to her true preferences



Strategic behaviorStrategic behavior

• Manipulation: a voter (manipulator) casts a 
vote that does not represent her true p
preferences, to make herself better off
A ti l i t t f if th i• A voting rule is strategy-proof if there is never 
a (beneficial) manipulation under this rule

• How important strategy-proofness is as an 
desired axiomatic property?desired axiomatic property?
– compared to other axiomatic properties



Manipulation under plurality rule 
(ties are broken in favor of       )

>> >>

>        > Plurality rule

>         >

> >>         >



Any strategy-proof voting rule?Any strategy proof voting rule?

N bl ti l i t t f• No reasonable voting rule is strategyproof
• Gibbard-Satterthwaite Theorem [Gibbard

Econometrica-73, Satterthwaite JET-75]: When there are 
at least three alternatives, no voting rules except 
di t t hi ti fdictatorships satisfy
– non-imposition: every alternative wins for some 

filprofile
– unrestricted domain: voters can use any linear 

d th i torder as their votes 
– strategy-proofness

• Axiomatic characterization for dictatorships!



A few ways out
• Relax non-dictatorship: use a dictatorship
A few ways out

• Restrict the number of alternatives to be 2

• Relax unrestricted domain: mainly pursued 
by economistsby economists
– Single-peaked preferences: 

– Range voting: A voter submit any natural 
n mber bet een 0 and 10 for each alternati enumber between 0 and 10 for each alternative

– Approval voting: A voter submit 0 or 1 for each g
alternative 30



Computational ways out
U ti l th t i t li t d th t b d

Computational ways out
• Use a voting rule that is too complicated so that nobody can 

easily figure out who will be the winner
Dodgson: computing the winner is complete [Hemaspaandrap– Dodgson: computing the winner is      -complete [Hemaspaandra, 
Hemaspaandra, &Rothe JACM-97] 

– Kemeny: computing the winner is NP-hard [Bartholdi, Tovey, &Trick 

2
p

SCW-89] and     -complete [Hemaspaandra, Spakowski, & Vogel TCS-05]

– The randomized voting rule used in Venice Republic for more 
than 500 years [Walsh&Xia AAMAS-12]

2
p

than 500 years [Walsh&Xia AAMAS 12]

• We want a voting rule where
– Winner determination is easyWinner determination is easy
– Manipulation is hard

31



Overview
Manipulation is inevitable
(Gibbard Satterthwaite Theorem)(Gibbard-Satterthwaite Theorem)

Can we use computational complexity as a barrier?

Yes
May lead to very

Why prevent manipulation?

Is it a strong barrier?
May lead to very 

undesirable outcomes

No How often?

Limited information

Other barriers?

Seems not very often

32
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Manipulation: A computational 
complexity perspective

If it is computationally too hard for a 
manipulator to compute a manipulationmanipulator to compute a manipulation, 
she is best off voting truthfully

– Similar as in cryptography
NP-
Hard

For which common 

voting rules manipulation is

Hard

voting rules manipulation is 
computationally hard?p y

33



Computing a manipulationComputing a manipulation

• Study initiated by [Bartholdi, Tovey, &Trick  SCW-89b]

• Votes are weighted or unweightedVotes are weighted or unweighted
• Bounded number of alternatives [Conitzer, Sandholm, &Lang JACM-

07]

– Unweighted manipulation is easy for most common rules 
– Weighted manipulation depends on the number of 

manipulators

• Unbounded number of alternatives (next few slides)
• Assuming the manipulators have complete 

information!

34



Unweighted coalitional manipulation 
(UCM) problem

• Given
– The voting rule rg
– The non-manipulators’ profile PNM

The number of manipulators ’– The number of manipulators n’

– The alternative c preferred by the manipulators

• We are asked whether or not there exists a 
profile PM (of the manipulators) such that c isprofile P (of the manipulators) such that c is 
the winner of PNM PM under r

35



The stunningly big table for UCMThe stunningly big table for UCM
#manipulators One manipulator At least twop p

Copeland P [BTT SCW-89b] NPC [FHS AAMAS-08,10]

STV NPC [BO SCW-91] NPC [BO SCW-91][ ] [ ]

Veto P [ZPR AIJ-09] P [ZPR AIJ-09]

Plurality with runoff P [ZPR AIJ-09] P [ZPR AIJ-09]

Cup P [CSL JACM-07] P [CSL JACM-07]

Borda P [BTT SCW-89b] NPC [DKN+ AAAI-11]
[BNW IJCAI-11]

Maximin P [BTT SCW-89b] NPC [XZP+ IJCAI-09]

Ranked pairs NPC [XZP+ IJCAI-09] NPC [XZP+ IJCAI-09]

Bucklin P [XZP+ IJCAI 09] P [XZP+ IJCAI 09]Bucklin P [XZP+ IJCAI-09] P [XZP+ IJCAI-09]

Nanson’s rule NPC [NWX AAA-11] NPC [NWX AAA-11]

Baldwin’s rule NPC [NWX AAA-11] NPC [NWX AAA-11]
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What can we conclude?What can we conclude?

• For some common voting rules, 
computational complexity provides somecomputational complexity provides some 
protection against manipulation

• Is computational complexity a strong 
barrier?
– NP-hardness is a worst-case concept– NP-hardness is a worst-case concept

37



Probably NOT a strong barrierProbably NOT a strong barrier

1. Frequency of 
manipulabilitymanipulability

2 E i f2. Easiness of 
Approximation

3. Quantitative G-S
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A first angle: 
frequency of manipulability

• Non-manipulators’ votes are drawn i.i.d.p
– E.g. i.i.d. uniformly over all linear orders (the 

i ti l lt ti )impartial culture assumption)

• How often can the manipulators make cHow often can the manipulators make c
win?
– Specific voting rules [Peleg T&D-79, Baharad&Neeman

RED-02, Slinko T&D-02, Slinko MSS-04, Procaccia and 
Rosenschein AAMAS-07]

39



General results?General results?

40



A slightly different way of thinking about 
positional scoring rules
• Map each vote to 3 real numbers such that the i-thMap each vote to 3 real numbers, such that the i th

component is the score that alternative ci obtains in this 
vote. 

2 1 0 2 1 0 2 1 0

c1 > c2 > c3 c2 > c1 > c3 c3 > c1 > c2

• Summing up the vectors to get the total score vector:

( 2, 1, 0 ) ( 1,      2,      0 ) ( 1,      0,      2 )

( 2, 1, 0 ) + ( 1, 2, 0 ) + ( 1, 0, 2 ) = ( 4, 3, 2 )

• Comparing the components, we havep g p ,
1st>2nd>3rd, so the winner is c1



Generalized scoring rules (GSRs)
[Xia&Conitzer EC-08]

F k N li d i l (f ) f• For any k N, a generalized scoring rule GS(f,g) of 
order k is composed of two functions:

f L(C) Rk– f: L(C) →Rk

• Assigns to each linear order a vector of k real numbers, 
called a generalized score vector (GSV)g ( )

– g: {weak orders over k components} → C

P  ( V          V ) (O d {f(P)})P = ( V1 ,    …   ,  Vn )

f (V ) f (V )…

g(Order{f(P)})

+ +f (V1) f (Vn)

Order{f(P)}

+ +

Weak order over the k components

Order{f(P)}



STV as a generalized scoring ruleSTV as a generalized scoring rule

• The components are indexed by (c, S) 
– c is an alternative and S is a subset of other alternatives
– the value of (c, S) is the plurality score of c given that 

exactly S has been eliminated from the election

• First round: 

• Second round:

Th f th i i• Therefore, the winner is  



Characterizing frequency of 
manipulability [Xia&Conitzer EC-08a]

• Theorem. For any generalized scoring rule
– Including many common voting rulesIncluding many common voting rules

# i l t
All-powerful

Θ(√ )# manipulators
No power

Θ(√n)

• Computational complexity is not a strong barrier against 
manipulation
– UCM as a decision problem is easy to compute in most cases
– Does NOT mean that it is easy for the manipulators to succeed

Th f Θ(√ ) h b t di d i t ll i [W l h– The case of Θ(√n) has been studied experimentally in [Walsh 
IJCAI-09] 44



Idea behind part of the proofIdea behind part of the proof

• For any pair of components of the total 
generalized score vector, with highgeneralized score vector, with high 
probability the difference between them is 

(√ )ω(√n)
– Central Limit TheoremCentral Limit Theorem
– o(√n) manipulators cannot change the order 

b t i f tbetween any pair of components
• so they cannot change the winner

45



Characterizing GSRsg
[Xia&Conitzer IJCAI-09]

• Theorem. A voting rule is a generalized 
scoring rule if and only if it satisfiesg y
– Anonymity

Homogeneity– Homogeneity
– Finite local consistency

• Dodgson’s rule does not satisfy 
homogeneity [Brandt MLQ09]homogeneity [Brandt MLQ09]

– Therefore, it is not a GSR
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A second angle: 
approximation
• Unweighted coalitional optimization 

(UCO) t th ll t b f(UCO): compute the smallest number of 
manipulators that can make c winmanipulators that can make c win
– A greedy algorithm has additive error no more 

than 1 for Borda [Zuckerman, Procaccia, 
&Rosenschein AIJ-09]

47



An approximation algorithm for pp g
positional scoring rules[Xia,Conitzer,& Procaccia EC-10]

• A polynomial-time approximation algorithm 
that works for all positional scoring rules
– Additive error is no more than m-2
– Based on a new connection between UCO forBased on a new connection between UCO for 

positional scoring rules and a class of scheduling 
problemsp

• Computational complexity is not a strong 
barrier against manipulationbarrier against manipulation
– The cost of successful manipulation can be 

il i t d (f l )easily approximated (for some rules)
48



The scheduling problems 
Q|pmtn|Cmax

• m* parallel uniform machines M1,…,Mm*

– Machine i’s speed is si (the amount of work doneMachine i s speed is s (the amount of work done 
in unit time)

* j b J J• n* jobs J1,…,Jn*

• preemption: jobs are allowed to be interrupted p p j p
(and resume later maybe on another machine)

• We are asked to compute the minimum• We are asked to compute the minimum 
makespan
– the minimum time to complete all jobs

49



Thinking about UCOposg pos

• Let p,p1,…,p 1 be the total points that c,c1,…,c 1Let p,p1,…,pm-1 be the total points that c,c1,…,cm-1

obtain in the non-manipulators’ profile
V

p c
PNM V1

=

c

{V1=[c>c1>c2>c3]}

p1p c1c1 p1 -pp1 –p-(s1-s2) s1-s2
s1=s1-s2(J1)

s2=s1-s3p2
c3c2 p p2 -pp2 –p-(s1-s4) s1-s3(J2)

s3=s1-s4
p3 c2

2

c3 p p3 -pp3 –p-(s1-s3)

1 3

s1-s4

( 2)

(J3)

50



The algorithm in a nutshellThe algorithm in a nutshell

Scheduling
Original UCO

Scheduling 
problem

[Gonzalez&Sahni
JACM 78] 

No more than
OPT+m-2

Solution to the Solution to the 

scheduling problemUCO
Rounding

51



Helps to prove complexity of 
UCM for Borda

• Manipulation of positional scoring rules = 
scheduling (preemptions only allowed at integerscheduling (preemptions only allowed at integer 
time points)

B d i l i d h d li– Borda manipulation corresponds to scheduling 
where the machines speeds are m-1, m-2, …, 0

• NP-hard [Yu, Hoogeveen, & Lenstra J.Scheduling 2004]

– UCM for Borda is NP-C for two manipulators p
• [Davies et al. AAAI-11 best paper]
• [Betzler, Niedermeier, & Woeginger IJCAI-11 best paper][Betzler, Niedermeier, & Woeginger IJCAI 11 best paper]
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A third angle: 
quantitative G-S
• G-S theorem: for any reasonable voting rule 

there exists a manipulation
• Quantitative G-S: for any voting rule that is 

“far away” from dictatorships the number offar away  from dictatorships, the number of 
manipulable situations is non-negligible

First work: 3 alternatives neutral rule [F i d t– First work: 3 alternatives, neutral rule [Friedgut, 
Kalai, &Nisan FOCS-08]

Extensions: [Dobzinski&Procaccia WINE 08 Xia&Conitzer– Extensions: [Dobzinski&Procaccia WINE-08, Xia&Conitzer
EC-08b, Isaksson,Kindler,&Mossel FOCS-10]

– Finally solved: [Mossel&Racz STOC-12]Finally solved: [Mossel&Racz STOC 12]
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Next stepNext step

• The first attempt seems to fail

C bt i iti lt f• Can we obtain positive results for a 
restricted setting?g
– The manipulators has complete information 

about the non-manipulators’ votes

– The manipulators can perfectly discuss theirThe manipulators can perfectly discuss their 
strategies

54



Information constraints
[Conitzer,Walsh,&Xia AAAI-11]

• Limiting the manipulator’s information can 
make dominating manipulation computationallymake dominating manipulation computationally 
harder, or even impossible
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Imperfect communication 
among manipulators

• The leader-follower model
– The leader broadcast a vote W, and the potential 

followers decide whether to cast W or not
• The leader and followers have the same preferences

– Safe manipulation [Slinko&White COMSOC-08]: a vote 
W that

• No matter how many followers there are, the 
leader/potential followers are not worse off

• Sometimes they are better off

– Complexity: [Hazon&Elkind SAGT-10, Ianovski et al. IJCAI-11]y
56



Overview
Manipulation is inevitable

(Gibbard Satterthwaite Theorem)(Gibbard-Satterthwaite Theorem)

Can we use computational complexity as a barrier?

Yes
May lead to very

Why prevent manipulation?

Is it a strong barrier?
May lead to very 

undesirable outcomes

No How often?

Limited information

Other barriers?

Seems not very often

57
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Research questionsResearch questions

• How to predict the outcome?
– Game theory

• How to evaluate the outcome?
• Price of anarchy [Koutsoupias&Papadimitriou STACS-99]Price of anarchy [Koutsoupias&Papadimitriou STACS-99]

–
Worst welfare when agents are fully strategic
Optimal welfare when agents are truthful

– Not very applicable in the social choice setting
Eq ilibri m selection problem

Worst welfare when agents are fully strategic

• Equilibrium selection problem
• Social welfare is not well defined

58



Simultaneous-move voting gamesSimultaneous move voting games

• Players: Voters 1,…,n

• Strategies / reports: Linear orders over 
alternativesalternatives

• Preferences: Linear orders over alternativesPreferences: Linear orders over alternatives

• Rule: r(P’), where P’ is the reported profile( ) p p

59



Equilibrium selection problemqu b u se ect o p ob e

>>

>        >
Plurality rule

>>

>        >

>>

60>        >



Stackelberg voting gamesg g g
[Xia&Conitzer AAAI-10]

• Voters vote sequentially and strategicallyVoters vote sequentially and strategically
– voter 1 → voter 2 → voter 3 → … → voter n
– any terminal state is associated with the winner under rule rany terminal state is associated with the winner under rule r

• At any stage, the current voter knows
the order of voters– the order of voters

– previous voters’ votes
true preferences of the later voters (complete information)– true preferences of the later voters (complete information)

– rule r used in the end to select the winner

• Called a Stackelberg voting game• Called a Stackelberg voting game
– Unique winner in SPNE (not unique SPNE)

Si il tti i

61

– Similar setting in [Desmedt&Elkind EC-10]



General paradoxes (ordinal PoA)p ( )

• Theorem. For any voting rule r that satisfiesTheorem. For any voting rule r that satisfies 
majority consistency and any n, there exists an n-
profile P such that:profile P such that: 
– (many voters are miserable) SGr(P) is ranked 

somewhere in the bottom two positions in the true 
preferences of  n-2 voters

– (almost Condorcet loser) SGr(P) loses to all but one 
alternative in pairwise electionsa e a e pa se e ec o s

• Strategic behavior of the voters is extremely 
h f l i th t

62
harmful in the worst case



Simulation results

(a) (b)

• Simulations for the plurality rule (25000 profiles uniformly at random)
– x: #voters, y: percentage of voters

( ) t f t h f SPNE i t th t thf l i i– (a) percentage of voters who prefer SPNE winner to the truthful winner minus
those who prefer truthful winner to the SPNE winner

– (b) percentage of profiles where SPNE winner is the truthful winner

• SPNE winner is preferred to the truthful r winner by more voters 
than vice versa 63



Other types of strategic behavior 

• Procedure control by

(of the chairperson)
• Procedure control by 

– {adding, deleting} × {voters, alternatives}
partitioning voters/alternatives– partitioning voters/alternatives

– introducing clones of alternatives
changing the agenda of voting– changing the agenda of voting

– [Bartholdi, Tovey, &Trick MCM-92, Tideman SCW-07, Conitzer,Lang,&Xia IJCAI-
09]

• Bribery [Faliszewski, Hemaspaandra, &Hemaspaandra JAIR-09]

• See [Faliszewski, Hemaspaandra, &Hemaspaandra CACM-10] for a [ , p , p ]

survey on their computational complexity
• See [Xia Axriv-12] for a framework for studying many ofSee [Xia Axriv 12] for a framework for studying many of 

these for generalized scoring rules 64



Food for thoughtFood for thought

• The problem is still open!The problem is still open!
– Shown to be connected to integer factorization              

[Hemaspaandra, Hemaspaandra, & Menton Arxiv-12][Hemaspaandra, Hemaspaandra, & Menton Arxiv 12]

• What is the role of computational complexity in 
analyzing human/self interested agents’ behavior?analyzing human/self-interested agents  behavior?
– NP-hardness might not be a good answer, but it can be 

d i d “ i ti ” tseen as a desired “axiomatic” property

– Explore information assumption

– In general, why do we want to prevent strategic behavior?

• Practical ways to protect election
65
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Winner determination for 
traditional voting rules

TimeTime
Most traditional 

voting rules

# voters# alternatives
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Settings with exponentially many 
alternatives

Representation/comm nication Ho do• Representation/communication: How do 
voters communicate their
preferences?

NP-
Hard

• Computation: How do we efficiently 
compute the outcome given the votes?

69



Combinatorial domains
(Multi-issue domains)
• The set of alternatives can be uniquely 

characterized by multiple issuescharacterized by multiple issues

• Let I={x1,...,xp} be the set of p issues

• Let Di be the set of values that the i-th issue 
can take then C=D × ×Dcan take, then C=D1×... ×Dp

• Example:
– Issues={ Main course, Wine }

Alternatives={ } ×{ }– Alternatives={ } ×{                  }
70



Example: joint plan j
[Brams, Kilgour & Zwicker SCW 98]

• The citizens of LA county vote to directly 
determine a government plandetermine a government plan

• Plan composed of multiple sub-plans for 
several issues

E g– E.g., 

• # of alternatives is exponential in the # of 
issuesissues                 

71
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Criteria for combinatorial votingCriteria for combinatorial voting

• Criteria for the voting language
– CompactnessCompactness

– Expressiveness
• Usability: how comfortable voters are about it

• Informativeness: how much information is contained

• Criteria for the voting rule
C t ti l ffi i– Computational efficiency

– Whether it satisfies desirable axiomatic properties

73



CP net [Boutilier et al JAIR 04]CP-net [Boutilier et al. JAIR-04]
• An CP-net consists of

– A set of variables x1,...,xp, taking values on 
D1,...,Dp1, , p

– A directed graph G over x1,...,xp

– Conditional preference tables (CPTs) indicating– Conditional preference tables (CPTs) indicating 
the conditional preferences over xi, given the 
values of its parents in Gvalues of its parents in G

• c.f. Bayesian network
C diti l b bilit t bl– Conditional probability tables

– A BN models a probability distribution, a CP-

74
net models a partial order



CP nets: An exampleCP-nets: An example

Variables: x,y,z. { , },xD x x { , },yD y y { , }.zD z z

xx

Graph                                      CPTs

zy
p

This CP-net encodes the following partial order:

75Lexicographic extension w.r.t. x>y>z 



Inference in CP-nets

• The dominance problem: decide where an

Inference in CP-nets

• The dominance problem: decide where an 
alternative a is preferred to alternative bp

• NP-complete for acyclic CP-nets [Boutilier et 
al. JAIR-04]

– P for some special casesP for some special cases

• PSPACE-hard for cyclic CP-nets [Goldsmith 
et al. JAIR-08]
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Sequential voting rules g
[Lang IJCAI-07, Lang&Xia MSS-09]

• Issues: main course, wine

• Order: main course > wine

• Local rules are majority rules

• V1: > , : > , : >V1:             ,               :                ,                  :          

• V2: >            ,               :        >        ,                  :        > 

V > > >• V3: >            ,               :        >        ,                  :        >

• Step 1: 

• Step 2: given            ,         is the winner for wine

• Winner:    (            ,       )( )

77



Axiomatic property of sequential 
voting [Lang&Xia MSS-09]

Axiomatic 
property

Global to local Local to global
property

Anonymity Y Y

N t lit Y NNeutrality Y N

Monotonicity Only last local rule Only last local rule

Consistency Y Y

Participation Y Np

Pareto Efficiency Y N

Strong monotonicity Y YStrong monotonicity Y Y
78



Quantifying the criteria for the 

• Compactness
voting language

Compactness
– number of bits used to encode the elements in the language

E i• Expressiveness
– Usability

• Suppose a voter’s preferences are a linear order over all 2p alternatives

• We say that a voter is comfortable if she can find at least one element 
in the language that is consistent with her preferencesin the language that is consistent with her preferences

# linear orders that are consistent with some element in the language

# all linear orders

– Informativeness: 
# Pairwise comparisons encoded by an element

2p(2p 1)/2

# all linear orders

• Mainly used to evaluate languages that encodes partial orders 79

2p(2p-1)/2



Previous approachesPrevious approaches

Computational Expressiveness
Voting rule Computational

efficiency Compactness
Expressiveness

Usability Informativeness

Plurality High High High LowPlurality High High High Low

Borda, etc. Low Low High High

Issue-by-issue High High Low Medium

We want a balanced rule!

80



Sequential voting vs. 
i b i tiissue-by-issue voting

C t ti l Expressiveness
Voting rule Computational

efficiency Compactness
Expressiveness

Usability Informativeness

Plurality High High High LowPlurality High High High Low

Borda, etc. Low Low High High

Issue-by-issue High High Low Medium

Sequential 
voting High Usually high Medium Medium

Acyclic CP-nets 
( tibl ith th d i )

81
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Usability of acyclic CP-netsUsability of acyclic CP nets
[Xia, Conitzer, &Lang AAAI-08]

• TheoremTheorem

# linear orders compatible with acyclic CP nets# linear orders compatible with acyclic CP-nets
# all linear orders

is exponentially small (in 2p)p y ( )
• Acyclic CP-nets are still too restrictive

82



Generalization
• Cyclic CP-net + local rules
• Why?

Any linear order is consistent with a (possibly) cyclic– Any linear order is consistent with a (possibly) cyclic 
CP-net

CP nets ith a complete graph (each edge has both• CP-nets with a complete graph (each edge has both 
directions)

• Cyclic CP nets has high usability• Cyclic CP-nets has high usability

x : y  y y : x  x

CP d “l li d” f i l i f i

xy  xy  xy  xy x : y  y y : x  x
CPT(y) CPT(x)

x y

– CP-nets encode “localized” preferential information
83



H-compositionp
[Xia, Conitzer, &Lang AAAI-08]

• For any variable xi  and any valuation of the other 
variables (context), use ri to select the winners in this 
context

• In the induced graph, draw an edge from any winner toIn the induced graph, draw an edge from any winner to 
any other candidates in the same context. 

Use a choice set function to select the global winner• Use a choice set function to select the global winner 
based on this graph
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H composition: an exampleH-composition: an example
• Local rules: majority rules S TLocal rules: majority rules

• Choice set: Schwartz set

S T

– The set of “top” nodes

85



H-composition vs.Yet another approach
C t ti l Expressiveness

Sequential rules
C t ti l Expressiveness

Yet another approach

Voting rule Computational
efficiency Compactness

Expressiveness
Usability Informativeness

Plurality High High High Low

Voting rule Computational
efficiency Compactness

Expressiveness
Usability Informativeness

Plurality High High High LowPlurality High High High Low

Borda, etc. Low Low High High

Plurality High High High Low

Borda, etc. Low Low High High

Issue-by-issue High High Low MediumIssue-by-issue High High Low Medium

Sequential 
voting High Usually high Medium Medium

H iti

Sequential 
voting High Usually high Medium Medium

H-compositionH-composition
[Xia et al. AAAI-08] Low-High Usually high High Medium

MLE approach
L Hi h U ll hi h Hi h M di

H composition
[Xia, Conitzer, 

&Lang AAAI-08]
Low-High Usually high High Medium

[Xia , Conitzer, & 
LangAAAMAS-10]

Low-High Usually high High Medium

86



AI may help!AI may help!

• Computing local/global Condorcet winner
– CSP with cardinality constraints [Li Vo &CSP with cardinality constraints [Li, Vo, & 

Kowalczyk AAMAS-11]

A l i ti l (i l di• Applying common voting rules (including 
Borda) to preferences represented by 
lexicographic preference trees

W i ht d MAXSAT l [L M i & Xi– Weighted MAXSAT solver [Lang, Mengin, & Xia 
CP-12]
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Strategic considerationStrategic consideration

• So far we have examined combinatorial 
voting fromvoting from
– axiomatic viewpoints

– computational considerations

• With strategic voters
– how to evaluate the harm?– how to evaluate the harm?

– how to prevent strategic behavior?

89



Strategic sequential votingg q g
[Xia,Conitzer,&Lang EC-11]

• What if we want to apply sequential rules pp y q
anyway?
– Often done in real life

– Ignore usability concernsIgnore usability concerns

– Voters vote strategically

90



Example
S T

Example

• In the first stage the voters vote simultaneously to determine S; then inIn the first stage, the voters vote simultaneously to determine S; then, in 
the second stage, the voters vote simultaneously to determine T

• If S is built, then in the second step                                    so the winner is

• If S is not built, then in the 2nd step                                   so the winner is

• In the first step, the voters are effectively comparing      and      , so the 
t d th fi l i ivotes  are                                       , and the final winner is 
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Strategic sequential voting 
(SSP)
• Binary issues (two possible values each)

V t t i lt l i• Voters vote simultaneously on issues, 
one issue after another

• For each issue, the majority rule is used 
to determine the value of that issue

N ilib i l ti bl• No equilibrium selection problem
– Unique SSP winnerUnique SSP winner

92



Multiple-election paradoxes 
for SSP (ordinal PoA)
• Main theorem (informally). For any p≥2, there 

exists a profile such that the SSP winner is 
– ranked almost at the bottom by every voter

– Pareto dominated by almost every other alternativePareto dominated by almost every other alternative

– an almost Condorcet loser

K lti l l ti d• Known as multiple-election paradoxes [Brams, 
Kilgour & Zwicker SCW-98,Scarsini SCW-98, Lacy&Niou JTP-
00 Saari&Sieberg APSR 01] [Lang&Xia MSS 09]00, Saari&Sieberg APSR-01], [Lang&Xia MSS-09]

• Strategic behavior of the voters is extremely
harmful in the worst case
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Any better choice of the order?Any better choice of the order?

• Theorem (informally). At least 
some of the paradoxes cannot be 
avoided by a better choice of theavoided by a better choice of the 
order over issues
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Preventing manipulation by 
domain restrictions

• Relax the unrestricted domain property in 
Gibbard-Satterthwaite

• A concise characterization for all strategy-
f ti l f bl fproof voting rules for separable preferences 

[LeBreton&Sen Econometrica-99]

• A concise characterization for all strategy-
proof voting rules for lexicographic p g g p
preferences [Xia&Conitzer WINE-10]
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Food for thoughtFood for thought

Computational 
ffi i Expressivenessefficiency Expressiveness

96
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Objectives of designing social 
choice rules

• OBJ1: Compromise • OBJ2: Reveal the “truth”• OBJ1: Compromise 
among subjective 
preferences

• OBJ2: Reveal the truth

preferences

100



Evaluation
M i l h bili l h d h

Evaluation
• Most importantly: the ability to reveal the ground truth
• Do we care about satisfiability of axiomatic 

properties?
– Consistency: if r(P1)∩r(P2)≠ , then r(P1 P2)=r(P1)∩r(P2)

– Monotonicity: the current winner c still wins if some voters 
raise c (while keeping other positions relatively unchanged)
N t lit ?– Neutrality?

• Yes for MLE

Anonymity?– Anonymity?
• Probably no, informed voters should have heavier weights

101



The MLE approach to voting
• The generative epistemic model: given a “groundtruth

outcome” o
– each vote is drawn conditionally independently given o, according 

to Pr(V|o)
– o can be a winning ranking or a winning alternatives– o can be a winning ranking or a winning alternatives

“Ground truth” outcome

Vote 1 Vote 2 Vote n……

• The MLE rule: For any profile P,
Th lik lih d f P i L(P| ) P (P| ) ∏ P (V| )– The likelihood of P given o: L(P|o)=Pr(P|o)=∏V P Pr(V|o)

– The MLE as rule is defined as

MLE (P) argmax ∏ P (V| )MLEPr(P)=argmaxo∏V PPr(V|o)
– Defines a correspondence (that selects multiple outcomes) 102



Assuming independence 
among the voters

• If we allow arbitrary correlation among 
voters then any voting rule is the MLE ofvoters, then any voting rule is the MLE of 
some probabilistic model [Conitzer&Sandhom UAI-05]

• Choice theory may help!
– Adopt (random) utility theory
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Condorcet’s MLE model 
[C d t 1785]

• Ground truth (outcome) is a ranking
G “

[Condorcet 1785]

• Given a “ground truth” ranking W and p>1/2, generate each 
pairwise comparison in V independently as follows (Suppose 
c d in W) d i Vpc d in W)

c d in W
c d in Vp

d c in V1 p

P ( b | b ) (1 )(1 )(1 )2

d c in V1-p

• The MLE is equivalent to the Kemeny rule [Y

Pr(  b c a | a b c ) =(1-p)p (1-p)p (1-p)2

• The MLE is equivalent to the Kemeny rule [Young 
JEP-95]

Pr(P|W)  pnm(m-1)/2-K(P W) (1 p) K(P W)  
pnm(m1)/2 1 p

p










K (P,W )

– Pr(P|W) = pnm(m 1)/2 K(P,W) (1-p) K(P,W) = 

– The winning rankings are insensitive to the choice of p (>1/2)
104
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Criticisms on Condorcet’s model
• Too much independence among pairwise 

comparisonscomparisons
– May lead to cycles in V
– Not a problem to apply the MLE method: we 

allow inputs to have possibly cyclic preferences

• MLE (Kemeny) is too hard to compute:
– NP-hard to compute [Bartholdi Tovey & Trick SCW-89a]NP hard to compute [Bartholdi, Tovey, & Trick SCW 89a]

– Practical ILP formulation [Conitzer,  Davenport, & 
Kalagnanam AAAI-06]Kalagnanam AAAI 06]

– Approximation [Ailon, Charikar, & Newman STOC-05]

Fixed parameter analysis [Betzler et al TCS 09]– Fixed-parameter analysis [Betzler et al. TCS-09]
105



Which common voting rules are 

When the outcomes are winning alternatives
MLEs? [Conitzer&Sandholm UAI-05]

• When the outcomes are winning alternatives
– MLE rules must satisfy consistency: if r(P1)∩r(P2)≠ , then 

r(P1 P2)=r(P1)∩r(P2)( 1 2) ( 1) ( 2)

– All common voting rules except positional scoring rules are NOT 
MLEs

• Positional scoring rules are MLEs
– Score vector s1,...,sm

– For any alternative c and any linear order V, let Pr(V|c) 2si, where 
i is the rank of c in V
L(P|c) 2Total score of c– L(P|c) 2

• This is NOT a coincidence!
– Positional scoring rules are the only voting rules that satisfy anonymity,Positional scoring rules are the only voting rules that satisfy anonymity, 

neutrality, and consistency! [Young SIAMAM-75]
106



Which common voting rules are 
MLEs? [Conitzer&Sandholm UAI-05]

• When the outcomes are winning rankings
– MLE rules must satisfy reinforcement (the 

counterpart of consistency for rankings)
– All common voting rules except positional g p p

scoring rules and Kemeny are NOT MLEs

• This is not a coincidence!This is not a coincidence!
– Kemeny is the only preference function (that 

outputs rankings) that satisfies neutralityoutputs rankings) that satisfies neutrality, 
reinforcement, and Condorcet consistency 
[Young&Levenglick SIAMAM-78][Young&Levenglick SIAMAM 78]
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Designing new MLE rulesDesigning new MLE rules

How can we choose the generativeHow can we choose the generative 
model?

How can we compute the MLE 
efficiently?

108



Mallows Model 
[Mallows Biometrika-57]

• Ground truth (outcome) is a ranking

• Parameterized by > 1

Pr(V|W) = K(V,W) / Z normalization factor– Pr(V|W) = K(V,W) / Z

• MLE is equivalent to Kemeny when 

normalization factor

q y
profiles only contain linear orders
– Let = p

1 p
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Random utility model (RUM)

G d t th i

y ( )
[Thurstone-27, McFadden 74]

• Ground truth is π1,…, πm

– Represent the “utility distributions” of 
alternatives

• Voters rank alternatives according to g
their stochastic utilities
– Pr(   |   ) Pr (   )– Pr(c2  c1  c3 |1, 2,3)  Prxi i

(x2  x1  x3)

π3π2π1

110
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Plackett-Luce Model
[Luce 59, Plackett 75]

Ground truth is λ λ• Ground truth is λ1,…,λm

– Represent the “utilities” of alternatives

Pr(c1  c2  cm | 1m )  1

1 m

 2

2 m

 m1

m 1 m

p

1 m 2 m m1 m

The quality of c1 is the largest among { c1,…,cm }The quality of c2 is the largest among { c2,…,cm }The quality of cm-1 is larger than the quality of cm

111



RUMs with double exponential 

• All π1,…, πm are shifts of the same distribution
The alternatives are parameterized by the means of

distributions
– The alternatives are parameterized by the means of 

distributions

• π’s are double exponential (Gumbel) distributions• π s are double-exponential (Gumbel) distributions
– Gives us the Plackett-Luce model [Block&Marschak 60]

The only distribution that give us P L [McFadden 74 Yellott 77]– The only distribution that give us P-L [McFadden 74, Yellott 77]

• Pros: 
C t ti ll t t bl ( di t d t EM t )– Computationally tractable (gradient descent, EM etc)

• Widely applied in Economics [McFadden 74] and “learning to 
rank” [Liu 11][ ]

• Also in elections [Gormley&Murphy 06,07,08,09]

– Justified by Luce’s Choice Axiom [Luce 59]

• Cons: the model is not a very natural RUM 112



A more natural RUMA more natural RUM

• π’s are normal distributions
Thurstone’s Case V [Thurstone 27]– Thurstone s Case V [Thurstone 27]

• Pros: very natural modely

• Cons: computationally intractable
– No closed-form formula for the likelihood 

function Pr(V | π) is knownfunction Pr(V | π) is known
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Comparing Condorcet p g
(Mallows) and RUMs( )

Condorcet
(Mallows)

RUMs
(Mallows)

Distribution of the 
Ground truth A ranking utilities of 

alternatives

Likelihood
function Has a simple form

Usually do not 
have a closed-
form formulaHardness of 

computation

Enumeration of m! 
ground truth 
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Aggregating partial ordersAggregating partial orders

• Extending existing model by marginalization 

– Pr(V |o) = Σ Pr(V |o)– Pr(VPO|o) = ΣV extends VPO
Pr(V |o)

• VPO : a partial order over C 

• o is a ground truth outcome

– RUMs [Gormley&Murphy 06,07,08,09]

– Mallows [Lebanon&Mao JMLR-08, Lu&Boutilier ICML-11]

– Condorcet model: Pr(V |W)=(1-p)K(VPO|W)(p) T-K(VPO|W)– Condorcet model: Pr(VPO|W)=(1-p) ( PO| )(p) ( PO| )

• T: the number of pairwise comparisons in VPO

Diff t f M ll !• Different from Mallows!
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A variant of Condorcet’s model
[Xia&Conitzer IJCAI-11]

• Parameterized by p+>p-≥0 (p++p-≤1)

Gi th “ t” ki W t• Given the “correct” ranking W, generate 
pairwise comparisons in a vote VPOp p PO

independently
c d in 

p

c d in W

VPO

p+

d c in VPO
p-c d in W d c in VPO

not1-p+-p-

117
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How many different MLE 
models? [Xia&Conitzer IJCAI-11]

• Recall that Kemeny is indifferent to the choice of p
• In the variant to Condorcet’s modelIn the variant to Condorcet s model

– Let T denote the number of pairwise comparisons in PPO

P (P |W) = ( )T-K(P W) ( )K(P W) (1 )nm(m-1)/2-T– Pr(PPO|W) = (p+)T-K(PPO,W) (p-)K(PPO,W) (1-p+-p-)nm(m-1)/2-T

=

– The winner is argminW K(PPO,W)

Constant
<1

– Equivalent to the marginalization approach

– Being used in Duke CS to rank Ph.D. CandidatesBeing used in Duke CS to rank Ph.D. Candidates
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Choosing a winning alternativeChoosing a winning alternative

• Ground truth is a winning alternative c (as 
opposed to a ranking)opposed to a ranking)

c d in 
>

VPO
p+

p+>p-

p++p-=2/3

c d c in VPO

p-

Others
1/3
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A general framework 

L t O d t th t f t

g
[Xia&Conitzer IJCAI-11]

• Let O denote the set of outcomes
– O={All rankings over C}

O C– O=C

• The model is parameterized by π (|o), where o O

• Key idea: explicitly model the probability of “no 
comparison” in a randomly generated VPO

– d d′ in VPO w.p. π(d d′ |o)
– d′ d in VPO w.p. π(d′ d |o)
– d′～d in VPO w.p. π(d′～d |o)
– π(d d′ |o) + π(d′ d |o) + π(d′～d |o) = 1
– π is called a pairwise-independent model
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Weakly neutral pairwise-
independent models

• A pairwise independent model π is 
weakly neutral, if for any pair of outcomesweakly neutral, if for any pair of outcomes 
o and o′, there exists a permutation M

h h f i fover C such that for any pair of 
alternatives (d,d′)( , )

π( d d′ |o) = π( M(d) M(d′) |o′ )
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Borda is the only extendable 
neutral rule

• Theorem. Let O=C. The MLE of a 
weakly neutral pairwise-independent 

d l ti fimodel satisfies
– The restriction r on profiles of linear– The restriction r on profiles of linear 

orders is neutral

if and only if r is Borda
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What are good generative probabilistic models?g g p
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How to evaluate a model?How to evaluate a model?

• Axiomatic approaches
– Luce’s choice axioms [Luce 59]Luce s choice axioms [Luce 59]

– Mallows [Mallows Biometrika-57]

• Experimental studies
– Usually hard if we do not know the ground truthy g
– Sometimes we know the ground truth

• Learning to rank validating P L [Cao et al ICML 07]• Learning to rank, validating P-L [Cao et al. ICML-07]

• Crowdsourcing, validating RUMs with normal 
distributions for pairwise comparisons [Pfeiffer et al AAAI 12]distributions for pairwise comparisons [Pfeiffer et al. AAAI-12]
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Food for thoughtFood for thought

• Existing models
– How to overcome the computational intractability 

of MLE inference?
– Testing the models on different application g pp

domains

• New modelsNew models
– Captures how agents form their preferences

M d t th t diti l i l h i i ti– May adopt the traditional social choice axiomatic 
approach (on the MLE as a whole)

– Consider correlations among voters’ preferences
125



2. Game-theoretic aspects 3. Combinatorial voting 4. MLE approaches
• Complexity of strategic • Complexity of • Complexity of MLE p y g

behavior
p y

representation and 
aggregation

p y
inference

Computational thinking + optimization algorithms

CS
Social 
Choice

Thank you!

Strategic thinking + methods/principles of aggregation

y

2. Game-theoretic aspects
• Stackelberg voting games

3. Combinatorial voting
• Strategic sequential

4. MLE approaches
• Axiomatic• Stackelberg voting games • Strategic sequential 

voting
• Axiomatic properties

• Axiomatic 
characterization
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Pairwise scoring rulesPairwise scoring rules

• A pairwise scoring function is a function 
s:C×C×O→R that
– Given o O, s scores each pairwise comparisons 

in the partial order independently denoted byin the partial order independently, denoted by 
s(d d′,o)

– s(PPO,o)=ΣVPO PPO
Σ(d d′) VPO

s(d d′,o)

• A pairwise scoring rule r select the outcomeA pairwise scoring rule rs select the outcome 
that maximizes s(PPO,o)

141



Weakly neutral pairwise
scoring  functions

• A pairwise scoring function s is weakly 
neutral if for any pair of outcomes o andneutral, if for any pair of outcomes o and 
o′, there exists a permutation M over C
such that for any pair of alternatives (d,d′)

s( d d′, o) = s( M(d) M(d′), o′ )
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ExamplesExamples

• Kemeny


s(d  d ' |W )  1

0





if d d′ in W
if d′ d in W

• Borda: q+>q-
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+

(d  d ' | )
q
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
 if d=c

if d′s(d  d ' | c)  q

0
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
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if d′=c

Otherwise
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Characterizing MLE rulesCharacterizing MLE rules

• Theorem. [Xia&Conitzer IJCAI-11]

Pairwise scoring rule with a 
weakly neutral PSF

MLE of a weakly neutral 
pairwise-independent model =

weakly neutral PSFpairwise independent model
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