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e Motivating real-world applications

® Background and basic security games

® Scaling to complex action spaces

® Modeling payoff uncertainty: Bayesian Security Games
® Human behavior and observation uncertainty

# Evaluation and discussion



Motivation: Game Theory for Security

e Limited security resources: Selective checking

e Adversary monitors defenses, exploits patterns




Many Targets Few Resources

How to assign limited resources
to defend the targets?
Game Theory: Bayesian Stackelberg Games




Game Theory: Bayesian Stackelberg Games

e Security allocation: (1) Target weights; (i1) Opponent reaction

e Stackelberg: Security forces commit first

® Bayesian: Uncertain adversary types
e Optimal security allocation: Weighted random
e Strong Stackelberg Equilibrium (Bayesian)

®» NP-hard (Conitzer/Sandholm ‘06)

Adversary

Terminal Terminal
#1 #2

N Terminal #1
[N Police

Terminal #2




ARMOR: Deployed at LAX 2007

e “Assistant for Randomized Monitoring Over Routes™

® Problem 1: Schedule vehicle checkpoints

® Problem 2: Schedule canine patrols

® Randomized schedule: (1) target weights; (11) surveillance

ARMOR-Checkpoints ARMOR-K9
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ARMOR Canine: Interface
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Federal Air Marshals Service (FAMS)

Undercover, in-flight
law enforcement

Flights (each day)
~27,000 domestic flights
~2,000 1nternational flights

Not enough air marshals:
Allocate air marshals to flights?
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Federal Air Marshals Service (FAMS)

m Massive scheduling problem

m Adversary may exploit predictable schedules

m Complex constraints: tours, duty hours, off-hours

100 flights, 10 officers:

1.7 x 1013 combinations

Overall problem: 30000
flights, 3000 officers

Our focus. international sector
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IRIS: “Intelligent Randomization
in International Scheduling” (Deployed 2009)

IRIS: Intelligent Randomization In Scheduling
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PROTECT (Boston and Beyond)

e US Coast Guard: Port Resilience Operational / Tactical
Enforcement to Combat Terrorism

® Randomized patrols; deployed in Boston, with more to follow

® More realistic models of human behaviors

US. COAST GUARD




Application in Transition: GUARDS

® GUARDS: under evaluation for
national deployment

@ Transportation Security Administration

®» Protect over 400 airports

@Limited security resources
@Numerous security measures
@Diverse potential threats

®» Adaptive adversary




International Interest: Mumbai

@ Protect networks
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Urban Road Network Security

Southern Mumbai



Beyond Counterterrorism: Other Domains

e LA Sheriff’s dept (Crime ® Customs and Border
suppression & ticketless Protection
iravelers): e Cybersecurity

e Forest/environmental

protection

¢ Economic
leader/follower models




Research Challenges

@ Scalable algorithms

# Rich representations; networks

# Payoff uncertainty, robustness

e Imperfect surveillance

# Evaluation of deployed systems

® Human behavior, bounded rationality
e Explaining game theory solutions
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@ Motivating real-world applications

® Background and basic security games

® Scaling to complex action spaces

® Modeling payoff uncertainty: Bayesian Security Games
® Human behavior and observation uncertainty

# Evaluation and discussion



Games

e Players:
»/ ..,n
®» focus on 2 players

e Strategies
»a cA
» o= (a,..,a,) €A
e Utility function
»U.:.A—>R



Security Games

e Two players
» Defender: ©
W Attacker: v
e Sect of targets: T

@ Sect of resources: R

® Defender assigns resources to protect targets
W Attacker chooses one target to attack

e Payoffs define the reward/penalty for each player for a successful or
unsuccessful attack on each target



Zero-Sum Payoffs?

e Are security games always zero-sum?

» NO!

¢ In real domains attackers and defenders often have different preferences
and criteria

®» Weighting casualties, economic consequences, symbolic value, etc.

®» Player may not care about the other’s cost (e.g., cost of security, cost
of carrying out an attack)

¢ We often make a weaker assumption:

®» An attack on a defended target is better than an attack on the same
target if it is undefended (for the defender)

W The opposite holds for attackers (attackers prefer to attack undefended
targets)



Security Game

2 players
2 targets
1 defender resource

Targetl  Target 2

Target 1 IL; = -2, 2

Target 2 -1, 1 2,-1




Game Solutions

Best Response

Targetl  Target 2

Target 1 IL; = -2, 2

Target 2 -1, 1 2,-1
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Game Solutions

Best Response

Targetl  Target 2

Target 1 IL; = -2, 2

Target 2 -1, 1 2,-1




Game Solutions

Mixed Strategy
Targetl  Target 2
50%
Target 1 I =l -2,2
50%

Target 2 -1, 1 2,-1




Game Solutions

Nash Equilibrium

A mixed strategy for each
player such that no player benefits
from a unilateral deviation Targetl  Target 2

//”\‘ '.:t.;-r; : ' Tal‘get 1 1, _1 -2, 2

Target 2 -1, 1 2, -1




Game Solutions

Nash Equilibrium

A mixed strategy for each
player such that no player benefits -, 3304

from a unilateral deviation Targetl  Target 2
- 40%
//”\‘ ‘-_t-;-r;-. Y Tal‘get 1 1, _1 -2, 2

60%
Target 2 -1, 1 2, -1




Stackelberg Equilibrium

Attackers use
surveillance in
planning attacks

Detender
commits to a
mixed strategy

(-0.9,0.9) (1.8,-0.9) (0, 0) (0, -0.5)



Strong Stackelberg Equilibrium

# Strong Stackelberg Equilibrium (SSE)

W Break ties in favor of the defender
» Can often induce SSE by perturbing defender strategy
® More robust concepts
W Weak Stackelberg Equilibrium not guaranenteed to exist
» Payoff uncertainty

» Quantal response

» Equilibrium refinement



Finding Stackelberg Equilibria

Multi-linear programming formulation
Conitzer and Sandholm, 2006

lnaprslul(Sl-,Sz)

81
Vs5, Zpslu-?(sl:s-lz) < Zpslll-Q(Sl-S:Z)
81 S1

Zpsl =1
81

pS] ZO

The formulation above gives
the maximum utility of the
leader when the follower
chooses action a

The Stackelberg equilibrium 1is
obtained by maximizing over
all the possible pure strategies
for player two



Single LP formulation

SKorzhzk & Conitzer 201 1!

max Z Tsp so1(81,82)

$1.89

2 N
Vsa, 85, E s1.50U2(81,85) < E Tg; soU2(S1,52)
s1
E Ll-slug.‘)_ — 1

81,89

Tgy 59 = 0

# Relaxation of the LP for correlated equilibrium

®» removed player 1's incentive constraints

e Corollary: SSE leader expected utility at least that of best CE



Research Challenges

e Scalability

®» Large, complex strategy spaces

# Robustness

®» Payoff & observation uncertainty
W Human decision-makers
# Not 1n this talk:

®» Stackelberg equilibria for dynamic games (Letchford &
Conitzer 2010, Letchford et al. 2012)

®» Multiple objectives (Brown et al. 2012)
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Large Numbers of Defender Strategies

FAMS: Joint Strategies
or Combinations

12 1.73 x 1013
____g._ % 100 Flight tours Schedules:
S () Air Marshals ARMOR

out of memory

I N S Don 't enumerate ALL joint strategies

| @Q,,QQ&Q,,@QQ . A Marginals (IRIS I & 1I)

* Branch and price (IRIS III)

4Aruba 06:00




IRIS | & II: Marginals Instead of Joint Strategies

ARMOR: 10 tours, 3 air marshals g5 lon. tanget covered

s A oL A-.tack Attack
Actions combos e X leL IZ
1 1,23 | x1
2 1.2.4 x2
3 1,2.5 x3 l
M
120 8,9,10 | x120

v

Compact  Tour Prob

Action
1 1 yl MILP similar to ARMOR, vy instead of x:
3 ) y2 ®» 10 instead of 120 variables

» yl+y2+y3...+yl0 =3
: : y3 » Sample from “y”’, not enumerate “x”
®» Only works for SIMPLE tours

10 10 y10 (Korzhyk et al. 2010)
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IRIS |

Coverage Probability

Four flights
One marshal

Zero Sum
Attacker payoffs

Uncovered | Covered
4 0
3 0
2 0
1 0




IRIS |

Coverage Probability

Attack Set:

Set of targets with
maximal expected
payoff for the
attacker




IRIS |

Observation 1

It never benefits

the defender to

add coverage outside the attack set.

0 0O 05| O

Coverage Probability



IRIS |

Compute coverage
necessary to make
attacker indifferent
between 3 and 4

025| O 0 0

Coverage Probability



IRIS |

Observation 2

It never benefits the

defender to add coverage to a subset
of the attack set.

05| 0 0 0

Coverage Probability



IRIS |

0.5

0.33

Coverage Probability



IRIS |

0.75

0.66

0.5

Coverage Probability

Need more than one
air marshal!



IRIS |

0.5

0.33

Coverage Probability

Can still assign 0.17



IRIS |

Allocate all remaining coverage to
flights in the attack set

Fixed ratio necessary for
indifference

0.54 1 0.38(0.08| O

Coverage Probability



Runtimes (min)

IRIS Speedups

Scaling with Targets: Compact
--ARMOR IRIS I - IRIS II

5
4.5
4
35
3
2.5
2
1.5
1
0.5
0 4 k—k—k—k—A
Targets 10 11 12 13 14 15 16 17 18 19 20

ARMOR ARMOR  IRIS
Actions Runtime Runtime

| AN N
Ireland

FAMS
London




IRIS lll: Branch and Price:
Tours of Arbitrary Size

Branch & Price: Branch & Bound + Column Generation
 Not out of the box

* Upper bounds: IRIS 1
* Column generation:

Network flow Lower bound 1:
Adversary best response

- Targetl

Upper bound:
Adversary 2 2...N

Lower bound 2:
Adversary best response

- Target?2

Lower bound N:
Adversary best response

- TargetN




IRIS lll: Branch & Price
Column Generation Quick Overview

LEAF NODE: Return the
Incrementally build support

st” joint schedule:

for mixed strategy

Lower bounglhve® =

Solution&agg%gﬁg, .

“Master” by N pure stratigles
Problem

(mixed integer
program)

(N+1)% pure
Strategy

Capacity 1 on all links

Lower bound N«

Adversary =2 largetN



Runtime (in secs) [log-scale]

IRIS Results

1000

100

10

Comparison (200 Targets, 10 Resources)

|
] IRIS II
|
B&P
|
IRIS
] 111
200 400 600 800 1000
Number of Schedules 8000
—~ 7000
k=
§ 6000
; 5000
g 4000
5 3000
2000
1000

ARMOR
Runs out of memory

Scale-up (200 Targets, 1000 schedules)

Targets/Schedule
3 Targets/Schedule

==/ Targets/Schedule
=5 Targets/Schedule
ey
e
27 1 1 1 1
5 10 15 20

Number of Resources



il Fare Checking in LA Metro
!Yin et al. 2012!

e Los Angeles Metro Rail System

W Barrier-free system with random inspections
» Approximately 300,000 daily riders, =<6% fare evaders

®» Fare evasion costs = $5.6 million annually (Booz Allen Hamilton
2007)

Ticket Required Beyon&-fﬁrﬁ:; Point




How to Model?
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How to Model?
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How to Model?
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How to Model?
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How to Model?
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N
Problem Setting

e Transition graph

Vertex: station and time pair

6PM 7PM 8PM 9PM

A | A 6PM XAZPM

B | B,6PM [--->» B, 7PM

C | C.6PM /C,:PM




N
Problem Setting

e Transition graph

Edge: inspection action

6PM 7PM 8PM 9PM

A | A 6PM XA,A?PM

B/| B, 6PM B, 7PM

C | C.6PM /C;PM




N
Problem Setting

e Transition graph

Edge: inspection action

6PM 7PM 8PM 9PM
A | A 6PM XA,A?PM

—-» B, 7PM

C|| C,6PM K-->» C, 7PM




Problem Setting

e Transition graph

Edge: inspection action
[, - action duration
£, - fare-check effectiveness

6PM 7PM 8PM 9PM
A | A 6PM XA,A?PM --» A, 8PM [-->» A 9PM

—-» B, 7PM B, 8PM

C|| C,6PM K-->»{ C, 7PM K-->»{ C, 8PM |-->»{ C, 9PM




Problem Settin

e Transition graph

Patrols: bounded-length paths

6PM 7PM 8PM 9PM

B

TEAMCORE

LSO



Problem Settin

e Transition graph

Patrols: bounded-length paths
y — patrol units
k — patrol hours per unit

6PM 7PM 8PM 9PM
A | A 6PM \MPM --» A, 8PM -->» A 9PM

B




Problem Setting cont.

e Riders: multiple types

W Each type takes fixed route

®» Fully observes the probability of being inspected

W Binary decision: buy or not buy the ticket

®» Perfectly rational and risk-neutral

6PM 7PM 8PM 9PM
A | A 6PM ‘\A,:PM -» A 8PM r-->» A 9PM
B|/| B,6PM -->» B, 7PM B, 9PM
C|| C,6PM /C,'/PM

C, 9PM

TEAMCORE

USC




Problem Setting cont.

e Riders: multiple types

W Each type takes fixed route

®» Fully observes the probability of being inspected

W Binary decision: buy or not buy the ticket

®» Perfectly rational and risk-neutral

6PM 7PM 8PM 9PM
A | A 6PM ‘\A,:PM -» A 8PM r-->» A 9PM
B | B,6PM -->»{ B, 7PM

C|| C,6PM

/C,:'PM

Why do we
need this edge?

C, 9PM

TEAMCORE

USC



Basi mpact Formulation

e Based on transition graph

e Strategy representation: marginal coverage on edges

6PM 7PM 8PM 9PM
A | A 6PM XA,:PM

——»{ B, 7PM

C|| C,6PM K-->» C, 7PM

TEAMCORE

LSO



Basi mpact Formulation

e Based on transition graph

e Strategy representation: marginal coverage on edges

6PM 7PM 8PM OPM

L » A 9PM

o7
--» B, 9PM

C C, 8PM C, 9PM

0.4

TEAMCORE
USC



Basi mpact Formulation

e Transition graph:. G =<V, E>
» Dummy source v, possible starting vertices V"

» Dummy sink v_, possible ending vertices V-

max DU
na ZPA O\ (2)
AEA
s.t. uy <min{p, 7 Z z.fe}, forall A € A (3)
eEN
136‘/+ UE‘/'—
Z Tyt p) = Z Ty ut), Torallv € V (5)
(v, v)EFE (v,oT)ek
Z le 2o <v-K,0L 2. < @,Vee & (6)
eck
TEAMCORE

USC



N
Issues with Basic ComEact Formulation

e Patrol length may not be bounded by
Lo, y=1k=1

0.5
kel Dy
~1 0.5 0.5 0.5 1
AN SR =Y \% Vy [ v
1 2 3
- ol ==
o\\\~~ O -------- (_) R ’
D Tt = D Twem) S (4)
veEV+ veEV —
Z .T(.-U/.p) = Z ','l?((".'l"-l-.)’ fOl‘ all (¥ E V (5)
(v ,w)eE (v,oT)eE
Zle-:z?e <~v-k0<z2. <0,Vee FE (6)
eckE



N
Issues with Basic ComEact Formulation

e Patrol length may not be bounded by
Lo, y=1k=1

TEAMCORE



N
Extended ComBact Formulation

e History-duplicate transition graph

®» Store history information in vertices

® Access necessary patrol information without exponential blowup

TEAMCORE
LSO



N
Extended ComBact Formulation cont.

e History-duplicate transition graph

®» Store history information in vertices
® Access necessary patrol information without exponential blowup

e E.g., to forbid patrols longer than 2 hours
W What information should be duplicated?

TEAMCORE



Extended Compact Formulation cont.

e History-duplicate transition graph

®» Store history information in vertices

® Access necessary patrol information without exponential blowup

e E.g., to forbid patrols longer than 2 hours
®» 2 subgraphs corresponding to 2 starting time: 6pm and 7pm

A 6PM| A TPM| A8PM| |AT7TPM A 8PM|__, A 9PM
(6PN 1\ "L (6P} (7PM)

B6PM| /B 7PM B 8PM B 7PM B 8PM B 9PM

| (6PN | (7PM (7PN
C, 6PM C,7PM C,8PM| [C,7PM C,8PM|__,[ C,9PM

| (6PM) | | (6PM) | | (6PM | L (7PM (ZPM) (7PM)

TEAMCORE



Outline

@ Motivating real-world applications
® Background and basic security games
® Scaling to complex action spaces

® Modeling payoff uncertainty: Bayesian Security
Games

® Human behavior and observation uncertainty

# Evaluation and discussion



Robustnhess

Target 1 Target 2 Target 3 Target 4

Defender

Reward : O ! 3
Defender

Penalty ! 4 6 10
Attacker

Penalty 2 - - =
Attacker

Reward ! 3 . ’

How do we know the model is correct?

If it is not exactly correct, how robust is the solution?




Estimating Target Values

What is the attacker’s value for a successful attack on a
particular target?

W What is the likely number of casualties?
™ What is the economic cost?

™ What is the value of the media exposure?
W What is the symbolic value of the attack?
®»How should these factors be weighted?

Answers can only be estimated



Modeling Choices

Players

How many?
Model organizations as individuals?

Specific people or generic types of
people?

Are players rational?
If not, how do they behave?

Actions

What 1s the set of feasible actions?
Do players know all of the actions?

[f the set 1s infinite, how do we
represent 1t?

Are some actions similar to others?

Are actions sequential?

Payoffs
e How do we determine payoffs?
e Are payoffs known to all players?

e What is the uncertainty about the
payoffs?

e Are payoffs deterministic or
stochastic?

e Do players care about risk?

Solution concepts

e What to do if there are multiple
equilibria?

Do we care about the worst case?
Bounded rationality

Limited observability

Can the solution be computed?



Robustness Perspectives

® Game theorist’s perspective

W The model is given, and known to everyone

®» We can model uncertainty explicitly by making the model
more complex

® Engineer’s perspective:
» Do the math
W Add a “fudge factor” to for safety
® The cost is worth the risk reduction

» “Unknown unknowns”

®» Confidence is critical

Real problems force us to deal with
robustness



Research on Robusthess

e Payoff uncertainty

® Conitzer et al 2006, Paruchuri et al 2008, Kiekintveld et
al 2011, Jain et al 2011, Yin et al 2012, Kiekintveld at al
2012, Brown et al 2012, ...

& Human behavior

®» Jain et al 2008, Pita et al 2009, Pita et al 2010, Yang et
al 2011, Pita et al 2012, Yang et al 2012, ...

¢ Observation/Execution uncertainty

® Yinetal 2010, Pitaetal 2011, Yinet al 2011, An et al
2012, ...



Diverse Techniques

Finite Models
Infinite Models




Finite Bayesian Games

Term #1 | Term #2

111 121% 11

112 2450

flagaubl 3322 23,

141 Harsanyi Transtormation
Termina -3.8,2.6

L Ceegeen \ ‘

NP-Hard




Multiple LPs Method

[Conitzer and Sandholm 2006/

@ First optimization formulation for FBSG
® Basic i1dea:

®» Lnumerate attacker pure strategies

®Solve an LP to maximize leader’s payoff

MEXMEX ) e 4, P1(0')01(0,0)

s.t. ZaeAlpl Jug(a',a) > Z pr(aug(a’,a") Va" € A
a' €Aq

duaca, 1ld) =1
p1(a) >0 VYae A4



Finite Bayesian Stackelberg Games

Attacker

A/\A
Type A1 TypeAs

Challenge: Exponential number of type combinations



Handling Multiple Adversary Types:
ARMOR

4,3 1.5,-0.5

.
4,2 -1,05

O<(a —Z X)) =(1—g)HM

ieX

X, € [O...l],q; e {0,1}



ARMOR: Run-time Results

== DOBSS
Asap

== Mip Nash

== Multiple LPs

* Multiple LPs
(Conitzer & Sandholm’06)

[y
(=]

* MIP-Nash
(Sandholm et al’05)

~~
/)]
Nt
0
E 1
I;
c
-
&

o
[ Y

* Sufficient for LAX

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of adversary types




Scaling Up: Hierarchical Solver (HBGYS)

[Jain et al. 2011]

» Efficient tree search
— Bounds and pruning
— Branching heuristics

 Evaluate fewer LPs

* Column generation

— Consider restricted games

— Solve much smaller LPs



Scaling Up: Hierarchical Solver (HBGYS)

» Key Idea: solve restricted games (few types)
* Use solutions to generate bounds/heuristics

m Each node in this tree

" represents a full
Bayesian Stackelberg
game

m Can use column
generation to solve
these nodes




Pruning

m Theorem [: If a pure strategy is infeasible in a “restricted”
game, all its combinations are infeasible in the Bayesian
game.




Bounds and Branching Rules

W Theorem 2: Leader payoff in the Bayesian game 1S upper
bounded by the sum of leader payoffs in the corresponding
restricted games. - |

AEA

{A1} {Az} {}1:;} {Ag}
Bi(t1) Ba(ta) Bs(ts) Ba(ta)



Column Generation

4 ) 4 )
| y
Master Problem Slave Problem
¢ )
\_ / - /
Defender and Attacker Scheduling Constraints

Optimization Constraints



HBGS Results

14000.00 - =& Dobss —@—Mlps —E—HBGS
_ 12000.00 - 00100 -
§ 10000.00 + é" N—
< 8000.00 - =
£ 6000.00 - g 100007
S 4000.00 - ER
~ E
2000.00 - E 1.00 -
0.00 = 0.10 ' r r ' .
10 20 30 40 50
Number of Types Number of Pure Strategies
Types Follower Pure Strategy Combinations Runtime (secs)
10 9.77¢7 0.41
20 9.5el13 16.33
30 9.3e20 239.97
40 9.1e27 577.49
50 8.9e34 3321.68




Approximation

50000. 00 1
7 40000. 00 |
< 30000. 00 -
g -0 AppI'OX 5 —k— ApprOX 10
-5 20000. 00 1
g 50000.00 -
ey, 10000. 00 -
0.00 77~ 40000.00 -
. o 7
O
! ° 6 £ 30000.00 -
Types Qé
5 20000.00
Approx1mat10n 10000.00
0.00 7

Targets



HUNTER

[Yin et al. 2012]

* Improves on tree search from HBGS

* Improved bounds (convex hulls on types)

* Bender’s decomposition on LPs

Runtime (in seconds)

—h
an
o
o

U
o
o
o

500

—+—HUNTER -=-HBGS -e-DOBSS

—x

50

20 30 _ 40
Number of Types

0

(a) Scaling up types.

© -—=HUNTER

T 1500F -m-HBGS e
S --DOBSS

E 100D = ommmssmsammreni Pl :
b

E 1] ) | TR, SN SRR ;
-

5

o /

5 10 15
Number of Pure Strategies

(b) Scaling up pure strategies.



Finite vs Infinite BSG

# Finite games capture distinct attacker types

® Terrorists vs. local criminal activity
®» Attackers with different motivations

® Infinite games capture distributional uncertainty

® L. o, Gaussian, Uniform distributions

® Natural for expressing beliefs over possible
values

®» Useful in knowledge acquisition from experts



Distributional Payoff Representation

[Kiekintveld et al. 2011]

coverage

vector -

target 1

Pb(payoft)

target
‘uncovered

"

0 ' payoff

target 2

Pb(payoff)

b A

0 ' payoff

YW

target T

Pb(payoff)

|A_,

EREEEN
ﬁ
-

0 ' payoff

P &




Problem 1 of 2

given a coverage ...and payoff distributions
vector C... e
SR Pb(payoff)
target
uncovered
20% target 1 !‘ ;
. 0 ° payoff
Pb(payoff)
80% target 2 ‘ A_
. 0 ' payoff :
..... s Pb(payoff) 2
50% target T !A_,
0 ° payoff




Problem 1 of 2

given a coverage ...and payoff distributions

vector C... -
SR —— Pb(payoff)
target
uncovered
20% attack target 1 !‘ :
vector . 0 ° payoif )
A(C) Pb(payoft)
80% target 2 | A_
. 0 ' payoff :
..... s Pb(payoff) 2
50% target T !A_,
0 ° payoff
\ J - o J




Problem 2 of 2

find the optimal ... given A(C)

coverage vector C*, for every C
(€)

a2(C)

Problem | of 2

iven o coverags | compate the sttack

ivan
i orin T
s i Po(paya)
a3(C) | <Yk
plri3 ear, e
. |

payotf ,,‘




Approach

Coverage Vector Attack Vector

) R
- /((1) Monte-Carlo estimation}

? \k(Z) Numerical methods

o

2. \
° (1) Optimal Finite Algorithms

~— (2) Sampled Replicator Dynamics

(3) Greedy Monte-Carlo
(4) Decoupled Target Sets

< Y,




RMSE

Attacker Response Estimation

Attacker Response (Gaussian)

0.04 =$=pP\WC Approximation

1 L*Monte Carlo
il LTJ @M
0.01 [ =

0 500 1000 1500 2000

Runtime (ms)



Computing Coverage Vectors

® Baselines

W Mean (ignore uncertainty)
» Uniform Random

¢ Exact optimization given sampled types
» SBE (ARMOR variation)

¢ Worst-case optimization

» BRASS

e Approximate optimization

®» Replicator Dynamics (SRD)
» Greedy Monte Carlo (GMC)
» Decoupled Target Sets (DTS)



Results for Distributional Games

|
Sample Types .ﬁ N
° o ° “\ + .
Approx Optimization g 4.3 N Uniform
s 4.2 A’ -~ Mean
Sample Types — eSimmpmpmm. . —4—SBE
Exact Optimization § 4
g ~=SRD
Assume g 39
Perfect Information 2 7i | | =X¥=DTS
' | ~@~BRASS
0 0.2 04 06 0.8 1 1.2
GMC

Payoff Uncertainty (std deviation)

Assuming perfect information is very brittle

Approximate both type distribution and optimization



Beyond Bayesian Games

® Bayesian games are powerful

® General framework for model uncertainty

®» Lxact behavior predictions based on uncertainty

® Some Iimitations

® Require distributional information
@Even MORE parameters to specity!
@What 1f these are wrong?

» Computational challenges (NP-hard)

®» Uncertainty about human decision making is hard
to capture in Bayesian models



Interval Security Games

[Kiekintveld et al. 2012]

Target 1 Target 2 Target 3 Target 4

Defender

Reward 0 0 0 0
Defender

Penalty oL -4 -6 -10
Attacker

Penalty 4 0 0 0
Attacker

Reward [1,3] [2,5] [4,7] [6,10]

* Attacker payoffs represented by intervals
* Maximize worst case for defender
* Distribution-free



Polynomial Interval Solver

[Kiekintveld et al. 2012]

* Fast feasibility checks

— G1ven resource constraint, can the defender
guarantee a given payoff?

— Exploits structure of security games
* Binary search on defender payoffs

* Polynomial time: O(n? * log(1/¢))



Attacker Payoffs

0 0

0

0

Defender Coverage

5 Targets

Bars represent range of
possible attacker payoffs



Attacker Payoffs

0

0

0.5

0.5

Defender Coverage

When targets are covered,
payoffs decrease and
range shrinks



Potential Attack Set

Given a coverage strategy,
which set of targets could
be attacked?

Minimum attacker payoff is R

Any target with a possible value
greater than R 1s 1n the

0 0 0 05 05 potential attack set

Defender Coverage



Polynomial Algorithm

¢ Main Idea:

®» Design fast feasibility check to determine if a given defender payoff is
possible

» Use binary search on defender payoffs

» Necessary resources increases monotonically with defender payoff

min



Feasibility Checks

Determine whether we can guarantee a defender payoff of D* using m or
fewer resources

Challenge: potential attack set depends on coverage, and number of possible
sets 1s combinatorial



Solution Idea

For any potential attack set, there 1s some target t’ that determines the value
of R

We will guess which target 1s t’ and construct a minimal solution for this
guess (n choices)

As soon as we find a choice of t’ that works, we have a feasible solution



Constructing a Solution

Consider the selection
=

Since t’ 1s 1n the PAS,

1 I I it must give D* if attacked

Calculate minimal
coverage on t’ using:

D*

c; =max(0,1 —
( Ué(ti))

0 0 0 0 0

Defender Coverage



Constructing a Solution

Consider the selection
=

Since t’ 1s 1n the PAS,
it must give D* 1f attacked

R Calculate minimal
coverage on t’ using:

D#

c; =max(0,1 —
( Ué(ti))

0 0 0.3 0 0

Defender Coverage



Constructing a Solution

0 0

0.3

0

Defender Coverage

For every other target t”,
consider two cases:

1) Target is in the PAS
2) Target 1s not in the PAS



Constructing a Solution

For every other target t”,
consider two cases:

1) Target is in the PAS
2) Target 1s not in the PAS

Case 1

Payoff for t” must
be at least D*

D*
c; = max(0,1 —
( Ué‘(ti))

0 0 0.3 0 0

Defender Coverage



Constructing a Solution

For every other target t”,
consider two cases:

1) Target is in the PAS
2) Target 1s not in the PAS

Case 2
R

Max payoff to attacker
for t”” must be <R

R
cfzmaxo,l— TGE
.

0 0 0.3 0.7 0

Defender Coverage



Constructing a Solution

Final consistency check

No target other than t’
can have a higher
minimum attacker payoff

Otherwise, t” does not set
R contradicting the 1nitial
R assumption

¢; = max(0,1 —

0 0 0.3 0.4 0

Defender Coverage



Constructing a Solution

0.2

0.5 0.3 0.4

0.7

Defender Coverage

For each target, compute
three coverage values

c!: coverage for D*
¢’: coverage not in PAS

¢’: consistency with R

Best value given by:

max(c;, min(c}, ¢?))



Analysis

Need to check each
target as t’

O(n?) worst case to test
feasibility for D*

Binary search on D

O(n? * log(1/¢))
where € 1s error term

0.2 0.5 0.3 0.4 0.7

Defender Coverage



Interval Solver Scalability

Solution Time Varying Tolerance

(11

30000)

== SEGS (0.01)
—i—[SEGS (0.001)

== |SEGS (0.0001)

Time (ms)

0 2000 4000 6000 B00J0000

Number of Targets

Fastest Bayesian solvers (HBGS, HUNTER)
scale only to 10s or 100s of targets



Outline

@ Motivating real-world applications

® Background and basic security games

® Scaling to complex action spaces

® Modeling payoff uncertainty: Bayesian Security Games
® Human behavior and observation uncertainty

# Evaluation and discussion



Key Topics

e PART I: Integrate models of human decision making as attacker’s
response

» Key model used.

@ Anchoring bias and epsilon-bounded rationality

@ Prospect Theory [Kahneman and Tvesky, 1979]

@ Quantal Response [McKelvey and Palfrey, 1995]
» New efficient algorithms

» Results from experiments with human subjects

@ Quantal Response (QRE) outperforms other algorithms

e PART II: Impact of limited observations assuming rational attacker



Uncertainty: Attacker Decision Bounded Rationality &
Observations: Experimental Setup

Your Rewards:
10 |

Your Penalties:
-2 -3
Pirate’s Rewards:

. |

Pirate’s Penalties:




Uncertainty: Human Bounded
Rationality and Observations

Average expected reward
Unobserved 5 Observations 20 Observations Unlimited

bl

mDOBSS
O0MAXIMIN
@ Uniform
@ COBRA
O COBRA-C

®» [78 total subjects, 2480 trials, 40 subjects for each setting
» Four reward structures, four observation conditions

»DOBSS: Outperforms uniform random, similar to Maximin



Uncertainty: Human Bounded

Rationalitx and Observations

»COBRA:
®» “epsilon optimality”
®» Anchoring bias: Full observation vs no observation: o

Choosiﬁg observation:
a (evenafzrl unlimited

'R’ bservat on:
X x.q ZJ Z‘ L P R X q] = Servaﬁﬁiﬂlo%%)servatlon.

ieX lel jeQ

st x'= (1 + QDX |)

e(l—g))<(a'-) Cix')<e+(1—-q))M

ieX




Unlimited Observations: Choosing a

O _
- ® DOBSS
= 0.5 - MAXIMIN
E m UNIFORM
) -1 - m COBRA(0,2.5)
g = COBRA(.20,2.5)
o -1l.
z COBRA(.37,2.5)
o COBRA(.60,2.5)
COBRA(.70,2.5)
-2.5
-
3.5 4
- - M‘—o‘\w
5 <
a5
D T T T T T T T T T

da - Setting




Prospect Theory

® Model human decision making under uncertainty

® Maximize the ‘prospect’ [Kahneman and Tvesky, 1979]

prospect= Zﬂ(xi) -V(C)

ic AllOutcomes

®» (). weighting function
®» J/(:): value function



Empirical weighting function

e Slope gets steeper as x
gets closer to 0 and 1

e Not consistent with
probability definition

» n(x)+r(l—x) <1
e Empirical value:

v=0.64 (0<y<1)

() = 1
08 (m’T-I—(l.—x)'f)_’?. .........
OB b oereresmonerermnmers b sl —
c
R §
R (U e P e
00 Lyt s s stinns smonan oo o ..............

0 02 04 06 0.8 1



—combute Defender Strateay _

® Piecewise Linear Approximation

1 £ 4 T 1

Piecewise Linear Approximation

097 mumss I1() function d

i

0.8

0.7

0.6

~ 0.5

0.4

0.3

0.2

0.1




Empirical value function

® Risk averse regarding
gain

® Risk seeking
regarding loss

¢ Empirical value:
0=p=0.88, A=2.25




BRPT': Best Response to PT

e Mixed-Integer Linear Program

e Goal: maximize defender expected utility

max DefenderUtility

X

s.t le. <Total Resources (1)

1ieX

Welghtln =) ﬂ(xi) = Z bk “ X (2)
g k=1..5
Function Z q;,=1 (3)

jeQ
Maximiz === () < Adversary Prospect <M-(1-¢,),VjeQ )
C

prospect DefenderUtility — Z xR, <M-(1-q,) (5)

ieX



Quantal Response Equilibrium

® Error in individual’s response
® Still: more likely to select better choices than worse choices
® Probability distribution of different responses

e Quantal best response:
eﬂ-U(j,x)

iiU(k)
e”

k=1

q;, =

® A: represents error level (=0 means uniform random)
» Maximal likelihood estimation (A=0.76)



Optimal Strategy against QR

® Solve the Nonlinear optimization problem

ZjEQZ. x,-Ry- . Helcﬁx;

ieX leX

max
X Z | I eiclkxl

keQ leX

s.t. Z X S Total Resource

0<x, <], VieX




The Online Game

= l—'—-li] 1ot

o

Gate: Gatez Gateg Gateq Gates Gate6 Gatey Gate8
i 2 R §® R 1R =

y i SeEai AT Z
10
9
- 6
Your Rewards 3
| =] -

-2 -2
5 = 23 3 4 3
1.00 1.00
0.73

¢ Subjects are given $8 as
the starting budget

e For each point they gain,
$0.1 real money is paid — JRESESEE

Probabili
of Guard ' 0.27
-~ 0.46 § 0.51 0.61
4 2 3 4 1 5 2

Guards'
Rewards

1

Guards' _ 8 ! 6 _ S _
Penalties 2 ~ :

Please choose a door to attack. Press the Submit Button to confirm your selection.




Experiment Setting

e / payoff structures

» 4 new, 3 from previous tests with COBRA

® 5 strategies for each payoff structure

® New methods: BRPT, RPT and BROR
®» Leading contender: COBRA
®» Perfect rational baseline: DOBSS

® Subjects play all games (randomized orders)

e No feedback until subject finishes all games



Average Defender Expected Utility

2
1.5
1
0.5
0 7] T .BRPT
i’ m RPT
g ~ mBRQR
-1 — mCOBRA
DOBSS
-1.5 |
-2
-2.5

Payoff 1 Payoff 2 Payoff 3 Payoff 4



Payoff 5

Payoff 6

Payoff 7

m BRPT

m RPT

® BROQR

m COBRA
DOBSS




Result Summary

¢ BRQR outperforms DOBSS in all 7 payoffs
®» [n payoff 1,3 and 4, the result is statistically significant

¢ BRQR outperforms COBRA in all 7 payoffs
®» [n payoff 2,3 and 4, the result is statistically significant

® The poor performance BRPT 1s surprising!



Uncertainty in Adversary Decision:
MATCH

Builds on OR, exploiting security game structure:

e Like QR: Adversary response error; better choice more likely

® Bound loss to defender on adversary deviation

Results on 100 games
MATCH | Draw

=

s
wun
o

8

v
°
e
0
%]
)
)]
£
)
E
E

a=.05 42 52 6

un
[am )

—
40 50

Targets

(=]




Uncertainty in Attacker Surveillance:
Stackelberg vs Nash

e Defender commits first: e Simultaneous move game:
W Attacker conducts surveillance » Attacker conducts no
W Stackelberg (SSE) surveillance

» Mixed strategy Nash (NE)

How should a defender compute her strategy?

For security games (*):

Set of defender strategies

NE = Minimax
C = D




Action Execution & Observation Uncertainty

® RECON:

®» WWorst-case protection against action-execution & observation
uncertainty

®» Efficient MILP and heuristics

m RECON m MAXIMIN m ERASER Worst m COBRA Worst

Solution Quality
bbb Nbhbbbio

10 20 30 40 50 60 70 80
#Targets



Outline

@ Motivating real-world applications

® Background and basic security games

® Scaling to complex action spaces

® Modeling payoff uncertainty: Bayesian Security Games
® Human behavior and observation uncertainty

@ Evaluation and discussion



How Do We Evaluate Deployed Systems?

e “Main” vs “Application track”: Evaluating deployed systems not easy

» Cannot switch security on/off for controlled experiments

» Cannot show we are “safe” (no 100% security)

® Are our systems useful: Are we better off than previous approaches?

1. Models and simulations

Human adversaries in the lab

Actual security schedules before vs after
Expert evaluation

“Adversary” teams simulate attack

Supportive data from deployment

N S RN

Future deployments



Key Conclusions

® Human schedulers:

®» Predictable patterns, e.g. LAX, FAMS (GAO-09-9037T)
®» Scheduling burden

® Uniform random:

» Non-weighted, e.g. officers to sparsely crowded terminals

e Simple weighted random:

® No adversary reactions, & enumerate large number of combinations?

Systems 1n use for a number of years: without us “forcing” use

®» [nternal evaluations, e.g. LAX evaluation by FBI, foreign experts



1. Models and Simulations:

ExamEIe from IRIS gFAMSl

B Uniform = Weighted: sum of defender covered

= Weighted: min of defender uncovered mIRIS

4
2 B I
0

25

150

0

-10



1

3. Actual Security Schedules Before vs After:
Example from PROTECT (Coast Guard

Patrols Before PROTECT:
Boston

140

120

100

80

60

40

20

Patrols After PROTECT:
Boston

e Patrol 1
= Patrol 2

Patrol 3

= Patrol 4

e Patrol 5
== Patrol 6
e Patrol 7
— = Patrol 8

Patrol 9
W
am— I
1 2 3 4 5 6 7



4. Expert Evaluation

Example from ARMOR_ IRIS & PROTECT

February 2009: Commendations
LAX Police (City of Los Angeles) September 2011: Certificate of
b, Appreciation (US Federal Air

A :
| % Marshals Service)

o

=)

%
‘5& &

2 ND 5E

Transportation Security
Administration

Office of Law Enforcement/Federal Air Marshal Service

Milind Tambe

July 2011: Operational Excellence
Awa rd (U S C OaSt G ua rd ) B OSto n) In recognition and appreciation of your outstanding achievement in developing the
Intelligent Randomization In Scheduling (IRIS) program to advance the mission of the

Office of Law Enforcement/Federal Air Marshal Service.

This 2" day of September, 2011

7
C A e

James B, Curren
Studies, Rescarch and Analysis
Office of Flight Operations




5. “Red” Teaming, Supportive data
Example from PROTECT

® “Mock attacker” team deployed in Boston

®» [ncorporated adversary’s known intent, capability
» Comparing PRE- to POST-PROTECT: “deterrence” improved

® Additional real-world indicators from Boston:

® PRE- to POST-PROTECT: Actual reports of illicit activity
®» [ndustry port partners comments:

@ “The Coast Guard seems to be everywhere, all the time."

(With no actual increase in the number of resources)



140 -

120 -

100 -

80 -

60 -

6. What Happened at Checkpoints before and after ARMOR
-- Not a Controlled Experiment!

(pre)4/17/06
to 7/31/07

m 1/1/08 to
12/31/08

m1/1/09 to
12/31/09

m 1/1/10 to
12/31/10

40 -
20 A
0 -
N
\QQ% &\G"@% @0& &O\%
R\ & &
& 60 N
RS
& & ¥
& <

January 2009
eJanuary 3%
eJanuary 9t

eJanuary 10t
eJanuary 12
January 17®
eJanuary 22"

Loaded 9/mm pistol
16-handguns,

4-rifles

[-assault rifle;

1000 rounds of ammo
Two unloaded shotguns
Loaded 22/cal rifle
Loaded 9/mm pistol
Unloaded 9/mm pistol
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® Lfficient algorithms: Scale-up to real-world problems

®» Observability: Adversary surveillance uncertainty

®» Human adversary: Bounded rationality, observation power

» Uncertainty ...



Thank you!

Chris Kiekintveld Bo An Albert Xin Jiang

cdkiekintveld(@utep.edu
boa@usc.edu

jlangx(@usc.edu
http://teamcore.usc.edu/security

TEAMCORE
USC




