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Part 2: Bayesian Mechanism Design 



Prologue:  
An Introduction to Bayesian Mechanism Design 



Bayesian Mechanism Design 

Algorithmic Mechanism Design: a central authority wants to 
achieve a global objective in a computationally feasible way, but 
participant values/preferences are private. 

 

Bayesian Algorithmic Mechanism Design: If the 
authority/participants have information about the distribution of 
private values, does this lead to better mechanisms? 

 

For Example: 

 Historical market data 

 Domain-specific knowledge 

 Presumption of natural inputs 



Example: selling a single item 

Problem: Single-item auction 

 

1 object to sell 

𝑛 potential buyers, with values 𝒗 = 𝑣1, 𝑣2, … , 𝑣𝑛 for the object. 

Buyer objective: maximize utility = value - price 

 

Design Goals:  

a) Maximize social welfare (value of winner) 

b) Maximize revenue (payment of winner) 

 



Example: selling a single item 

Vickrey auction:  

 Each player makes a bid for the object. 

 Sell to player with highest bid.  

 Charge winner an amount equal to the next-highest bid. 

 

 

Properties: 

• Vickrey auction is dominant strategy truthful.   

• Optimizes social welfare (highest-valued player wins). 

• Revenue is equal to the 2nd-highest value. 

 



Example: selling a single item 

First-price auction:  

 Each player makes a bid for the object. 

 Sell to player with highest bid.  

 Charge winner an amount equal to his own bid. 

 

 

First-price auction is not truthful.   

 How should players bid?  What is “rational”? 

 How much social welfare is generated? 

 How much revenue is generated? 

 



Bayes-Nash Equilibrium 

Bayesian Setting: buyer values are drawn independently from a 
known product distribution 𝑭 = 𝐹1 × 𝐹2 ×⋯× 𝐹𝑛. 

 

Players bid to maximize expected utility, given distribution 𝑭. 

 

Definition: a strategy 𝑠 maps values to bids: 𝑏 = 𝑠 𝑣 . 

 

A strategy profile 𝒔 = (𝑠1, 𝑠2, … , 𝑠𝑛) is a Bayes-Nash equilibrium 
for distribution 𝑭 if, for each 𝑖 and 𝑣𝑖 , 𝑠𝑖(𝑣𝑖) maximizes the 
expected utility of player 𝑖, given that others play 𝒔 and 𝒗 ∼ 𝑭. 

 
𝐸𝑣∼𝐹[𝑢𝑖 𝑠𝑖 𝑣𝑖 , 𝑠−𝑖 𝑣−𝑖 )  𝑣𝑖] 



First-Price Auction: Equilibria 

Example: First-price auction, two bidders, values iid from U[0,1]. 

Claim: strategy 𝑠 𝑣 =
𝑣

2
  is a symmetric Bayes-Nash equilibrium. 

Proof: Suppose player 1 plays 𝑠1 𝑣1 =
𝑣1

2
.  

How should player 2 bid, given his value 𝑣2? 

        E[2’s utility] = 𝑣2 − 𝑏2 × Pr [𝑏2 > 𝑏1] 

     = 𝑣2 − 𝑏2 × Pr 𝑏2 >
𝑣1

2
 

     = 𝑣2 − 𝑏2 × 2b2        

     = 2 𝑣2𝑏2 − 𝑏2
2  

Take derivative with respect to 𝑏2 and set to 0.  Solution is 
𝑏2 =

𝑣2

2
, so 𝑠 𝑣2 =

𝑣2

2
 is utility-maximizing. 



First-Price Auction: Equilibria 

Example: First-price auction, two bidders, values iid from U[0,1]. 

Claim: strategy 𝑠 𝑣 =
𝑣

2
  is a symmetric Bayes-Nash equilibrium. 

 

Corollary 1: Player with highest value always wins, so the first-
price auction maximizes social welfare. 

 

Corollary 2: 

 Expected revenue = 
1

2
× 𝐸[max 𝑣1, 𝑣2 ] = 

1

2
×

2

3
 = 

1

3
 

 

Note: same social welfare and revenue as the Vickrey auction!  

 



Notation:  Suppose that players are playing strategy profile 𝒔. 
 𝑥𝑖 𝑣𝑖  - probability of allocating to bidder 𝑖 when he declares 𝑣𝑖 
 𝑝𝑖 𝑣𝑖  - expected payment of bidder 𝑖 when he declares 𝑣𝑖 
where expectations are with respect to the distribution of others’ values. 
 
Theorem [Myerson’81]: For single-parameter agents, a mechanism and strategy 
profile are in BNE iff: 
 a) 𝑥𝑖 𝑣𝑖  is monotone non-decreasing, 

 b) 𝑝𝑖 𝑣𝑖 = 𝑣𝑖𝑥𝑖 𝑣𝑖 −  𝑥𝑖 𝑧 𝑑𝑧 + 𝑝𝑖 0
𝑣𝑖
0

     (normally 𝑝𝑖 0 = 0) 

 
 
 
 
 
 
Implication (Revenue Equivalence): Two mechanisms that implement the same 
allocation rule at equilibrium will generate the same revenue. 
 

Characterization of BNE 

𝑥𝑖 𝑣𝑖  

𝑣𝑖 

𝑝𝑖(𝑣𝑖) 



Bayesian Truthfulness 

How should we define truthfulness in a Bayesian setting? 

 

Bayesian incentive compatibility (BIC): every agent maximizes his 
expected utility by declaring his value truthfully. 

– Expectation is over the distribution of other agents’ values, as well as 
any randomization in the mechanism. 

 

 

That is, a mechanism is BIC for distribution 𝑭 if the truth-telling 
strategy 𝑠(𝑣) = 𝑣 is a Bayes-Nash equilibrium. 



Prior-Independent Mechanisms 

In general, a mechanism can explicitly depend on distribution 𝑭. 

 

However, the mechanisms is then tied to this distribution.  

• What if we want to reuse the mechanism in another setting? 

• What if 𝐹 is unavailable / incorrect / changing over time? 

 

Prior-Independent Mechanism: does not explicitly use 𝐹 to 
determine allocation or payments. 

Desirable in practice: robust, can be deployed in multiple 
settings, possible when prior distribution is not known. 



Big Research Questions 

For a given interesting/complex/realistic mechanism design setting, can we: 

 

1. Construct computationally feasible BIC mechanisms that (approximately) 
maximize social welfare? 

 

2. Describe/compute/approximate the revenue-optimal auction? 

 

3. Show that simple/natural mechanisms generate high social welfare 
and/or revenue at equilibrium? 

 

4. Design prior-independent mechanisms that approximately optimize 
revenue for every distribution? 

 

5. Extend the above to handle budgets, online arrivals, correlations, …? 

 



Outline 

Intro to Bayesian Mechanism Design 

 

Social Welfare and Bayesian Mechanisms 

 Truthful Reductions and Social Welfare 

 Designing mechanisms for equilibrium performance 

 

Revenue and Bayesian Mechanisms 

 Introduction to Revenue Optimization 

 Prophet inequality and simple mechanisms 

 Prior-independent mechanism design 



Part 1:  
Truthful Reductions and Social Welfare 



Bayesian Truthfulness 

One lesson from the first part of the tutorial: 

• Many approximation algorithms are not dominant strategy truthful. 

• Designing a dominant strategy truthful mechanism is complicated! 

 

Question: Is the problem of designing truthful algorithms easier in the 
Bayesian setting? 

 

The dream: a general method for converting an arbitrary 
approximation algorithm for social welfare into a BIC mechanism. 

 

This section: such transformations are possible in the Bayesian setting! 
(And are not possible for IC in the prior-free setting.) 



Problem: Single-Parameter Combinatorial Auction 
 
Set of m objects for sale 
n buyers 
Buyer i wants bundle 𝑆𝑖 ⊆ 1,2,… ,𝑚 , known in advance 
Buyer i’s value for 𝑆𝑖 is 𝑣𝑖, drawn from distribution 𝐹𝑖  

 

Goal: maximize social welfare. 
 

Possible Solution: VCG Mechanism 
– Allocate optimal solution, charge agents their externalities. 
– Problem: NP-hard to find optimal solution (set packing). 
– Can’t plug in an approximate solution – no longer truthful! 

 

What about Bayesian truthfulness? 
 

Example 



Bayesian Incentive Compatibility 
Recall: 𝑥𝑖 𝑣𝑖  - probability of allocating to bidder 𝑖 when he declares 𝑣𝑖. 
 𝑝𝑖 𝑣𝑖  - expected payment of bidder 𝑖 when he declares 𝑣𝑖. 
 
Theorem [Myerson’81]: A single-parameter mechanism is BIC iff: 
  a) 𝑥𝑖 𝑣𝑖  is monotone non-decreasing, and 

  b) 𝑝𝑖 𝑣𝑖 = 𝑣𝑖𝑥𝑖 𝑣𝑖 −  𝑥𝑖 𝑧 𝑑𝑧
𝑣𝑖
0

 

Expected  
allocation 
to agent i 

𝑣𝑖 

𝑥𝑖 𝑣𝑖  

Not BIC 

BIC 

Conclusion: To convert an algorithm into a BIC mechanism, we must monotonize its 
allocation curves.  (Given monotone curves, the prices are determined). 



Monotonizing Allocation Rules 

Example: 
Focus on a single agent 𝑖.   𝑣𝑖 is either 1 or 2, with equal probability. 
Some algorithm A has the following allocation rule for agent 𝑖: 
 
 
 
 
 
Note: 𝑥𝑖(⋅) is non-monotone, so our algorithm is not BIC. 
 
Idea: we would like to swap the expected outcomes for 𝑣𝑖 = 1 and 𝑣𝑖 = 2, without 
completely rewriting the algorithm. 
How to do it: whenever player 𝑖 declares 𝑣𝑖 = 1, “pretend” that he reported 𝑣𝑖 = 2, 
and vice-versa.  Pass the permuted value (say 𝜎(𝑣𝑖)) to the original algorithm. 
 
Possible problem: maybe this alters the algorithm for the other players? 
No! Other agents only care about the distribution of 𝑣𝑖, which hasn’t changed! 

𝑣𝑖 Pr [𝑣𝑖] 𝑥𝑖(𝑣𝑖) 

1 0.5 0.7 

2 0.5 0.3 

𝜎(𝑣𝑖) 𝑥𝑖(𝜎(𝑣𝑖)) 

2 0.3 

1 0.7 



Monotonizing Allocation Curves 
More Generally: 
Focus on each agent 𝑖 separately. 
Suppose there is a finite set V of possible values for 𝑖, all equally likely. 
 
 
 
 
 
 
 
 
Idea: permute the values of V so that 𝑥𝑖(⋅) is non-decreasing. 
Let this permutation be 𝜎𝑖.   
On input (𝑣1, 𝑣2, … , 𝑣𝑛), return  A(𝜎1 𝑣1 , 𝜎2 𝑣2 , … , 𝜎𝑛 𝑣𝑛 ). 
 
Claim: This transformation can only increase the social welfare.   
Also, since all 𝑣𝑖 are equally likely, 𝐹𝑖 is stationary under 𝜎𝑖.  So other agents are 
unaffected, and we can apply this operation to each agent independently! 

𝑣𝑖 

𝑥𝑖  

𝑣𝑖 

𝑥𝑖  



Monotonizing Allocation Curves 

Theorem: Any algorithm can be converted into a BIC 
mechanism with no loss in expected welfare. Runtime 
is polynomial in size of each agent’s type space. 

 [Hartline, L. ’10, Hartline, Kleinberg, Malekian ‘11, Bei, Huang’11] 

 

 
• Applies to general (multi-dimensional) type spaces as well! 

• Works for algorithms tailored to the distribution, not just worst-case 
approximations. 

• If agent values aren’t all equally likely, or if the allocation rules aren’t fully 
specified (algorithm is black-box), can approximate by sampling. 

• For continuous types, number of samples needed (and hence runtime) 
depends on dimension of type space. 

 



Transformation 

Approx. 
Algorithm 

Input v 
Allocation x 

We can view this mechanism construction as a black-box 
transformation that converts arbitrary algorithms into mechanisms. 

Dist. of 
values 

(drawn from 
known dists.) 

Payment p 



Extensions 

• Impossibility of general lossless black-box reductions when 
the social objective is to minimize makespan.   

[Chawla, Immorlica, L. ’12] 

 

• Impossibility of general lossless black-box truthful-in-
expectation reductions for social welfare in prior-free setting.    

[Chawla, Immorlica, L. ’12] 

 

Open: 

More efficient methods when type space is very large, 
or continuous with high dimension? 



Part 2:  
Simple Mechanisms and the Price of Anarchy 



Problem: k-Size Combinatorial Auction 
 
Set of m objects for sale 
n buyers 
Buyer i has a value for each bundle 𝑆 ⊆ 1,… ,𝑚  of size at most k 
 Specified by a valuation function: 𝑣𝑖 𝑆  
Valuation function 𝑣𝑖 drawn from distribution 𝐹𝑖 

 

Goal: maximize social welfare. 
 

Possible Solution 1: VCG Mechanism 
– Problem: NP-hard to find optimal solution (set packing). 

Possible Solution 2: BIC Reduction 
– Type space has high dimension.  Exponential runtime in general. 
– Construction is specific to the prior distribution 𝑭 

 

Question: is there a simple, prior-independent mechanism that approximates 
social welfare, if we don’t insist on Bayesian truthfulness? 

Example 



Greedy algorithm: 
– Allocate sets greedily from highest bid value to lowest. 

• Assumes either succinct representation of valuation functions or 
appropriate query access. 

 

Notes: 

• Worst-case (k+1)-approximation to the social welfare 

• Not truthful (with any payment scheme) 

 

Question: how well does the greedy algorithm perform as 
a mechanism? 

A Simple Approximation 

Recall: sets of size at most k 



Greedy first-price mechanism: 
– Elicit bid functions 𝑏1, … , 𝑏𝑛 from the players 
– Allocate sets greedily from highest bid value to lowest. 
– Each winning bidder pays his bid for the set received. 

• If player 𝑖 wins set 𝐴𝑖, he pays 𝑝𝑖 = 𝑏𝑖(𝐴𝑖).  

 
Notes:  
• Greedy mechanism is prior-independent.  
• Since the mechanism is not truthful, we would like to 

maximize the social welfare at every BNE, for every prior 
distribution 𝐹. 
– In other words: we want to bound the Bayesian Price of Anarchy 

• Important caveat: unlike truthfulness, the burden of 
finding/computing an equilibrium is shifted to the agents. 

A Greedy Mechanism 



Claim: For any 𝑭, the social welfare of any BNE of the greedy first-price 
mechanism is a (k+2) approximation to the optimal expected social welfare. 
 
Main idea:  (shared by many similar proofs) 
 
• Choose some 𝑭 and a Bayes Nash equilibrium of the mechanism. 

 
• Consider a deviation by one player aimed at winning a valuable set. 

1. Either this deviation “succeeds” and a high-valued set was won, resulting in 
high utility… 

2. …or it fails, because it was “blocked” by another player’s bid. 

 
• But the player can’t increase utility by deviating (equilibrium)! 
• So either (2) occurs often (blocking player has high value) or the player’s 

utility was already high (deviating player has high value). 
 

• Summing up over players, and taking expectation over types, we conclude 
that the total welfare must be large. 
 
 

 

Analysis 



Conclusion: the “natural” greedy algorithm performs almost as well at 
BNE as it does when agents simply report their true values. 
 
Theorem: For any combinatorial auction problem that allows single-
minded bids, a 𝛽-approximate greedy algorithm with first-price 
payments obtains a (𝛽 + 𝑜(1)) approximation to the social welfare at 
every BNE. 

     [L.,Borodin’10] 

 
 
Another natural payment method: critical prices 
• If a bidder wins set S, he pays the smallest amount he could have 

declared for set S and still won it. 
• A similar analysis holds for critical prices (with a slightly different 

bound, and some additional assumptions). 

Notes 



Combinatorial auctions via independent item bidding. 
[Christodoulou, Kovács, Schapira ’08, Bhawalkar, Roughgarden ’11, 

Hassidim,Kaplan,Mansour,Nisan’11] 

 
Analysis of Generalized Second-Price auction for Sponsored Search. 

[Paes Leme,Tardos’10, L.,Paes Leme’11, 
Caragiannis,Kaklamanis,Kanellopoulos,Kyropoulou‘11] 

 
Price of anarchy of sequential auctions. 

[Paes Leme, Syrgkanis, Tardos’12, Syrgkanis’12] 

 
A general “smoothness” argument for analyzing Bayesian Price of 
Anarchy. 

   [Roughgarden ’12, Syrgkanis’12] 

Related Work 



Interlude:  
Intro to Revenue Maximization 



Selling a single item, Revisited 

Problem: Single-item auction 

 

1 object to sell 

𝑛 buyers 

Value for buyer i is 𝑣𝑖 drawn from distribution 𝐹𝑖. 

 

Goal: Maximize revenue 

 

What is the optimal mechanism? 



Recall: 
Theorem [Myerson’81]: A single-parameter mechanism 
and strategy profile are in BNE if and only if: 
 a) 𝑥𝑖 𝑣𝑖  is monotone non-decreasing, 

 b) 𝑝𝑖 𝑣𝑖 = 𝑣𝑖𝑥𝑖 𝑣𝑖 −  𝑥𝑖 𝑧 𝑑𝑧
𝑣𝑖
0

 

 
Solution 1:  Write out the incentive compatibility 
constraints, apply Myerson’s characterization, express as 
an LP, and solve. 
 
But: not very informative; may not be able to solve 
efficiently in general. 

Characterization of BNE 



Notation: when value 𝑣 drawn from distribution 𝐹, we write 
 𝐹 𝑧 = Pr [𝑣 ≤ 𝑧], the cumulative distribution function 
 𝑓 𝑧 = 𝑑𝐹(𝑧)/𝑑𝑧, the probability density function 
 
Myerson’s Lemma:  In BNE, 𝐸[ 𝑝𝑖(𝑣𝑖)]𝑖 = 𝐸[ 𝜙𝑖 𝑣𝑖 𝑥𝑖(𝑣𝑖)]𝑖  
Where 𝜙𝑖 𝑣𝑖  is the virtual value function: 
 

𝜙𝑖 𝑣𝑖 = 𝑣𝑖 −
1− 𝐹𝑖 𝑣𝑖
𝑓𝑖(𝑣𝑖)

 

 
 
Proof: Write expectation as an integration over payment densities, 
apply Myerson characterization of payments, and simplify. 

Virtual Value 

Hazard Rate 



Myerson’s Lemma:  In BNE, 𝐸[ 𝑝𝑖(𝑣𝑖)]𝑖 = 𝐸[ 𝜙𝑖 𝑣𝑖 𝑥𝑖(𝑣𝑖)]𝑖  
 
Expected revenue is equal to expected virtual welfare. 
 
Idea: to maximize revenue, allocate to the player with highest virtual 
value. 
Problem: if function 𝜙𝑖 is not monotone, then allocating to the player 
maximizing 𝜙𝑖(𝑣𝑖) may not be a monotone allocation rule.   
Solution: restrict attention to cases where 𝜙𝑖 is monotone. 
 
Definition: distribution 𝐹 is regular if its virtual valuation function 𝜙 is 
monotone. 
 

Virtual Value 



Theorem:  If each 𝐹𝑖 is regular, the revenue-optimal auction 
allocates to the bidder with the highest positive virtual value. 
 
Example:  Agents are i.i.d. regular, distribution 𝐹. 
• All players have the same virtual value function 𝜙. 
• If all virtual values are negative, no winner. 
• Otherwise, winner is player with maximum 𝜙 𝑣𝑖 . 
• Since 𝐹 is regular, this is the player with maximum 𝑣𝑖 . 
 
Conclusion: For iid regular bidders, Myerson optimal auction 
is the Vickrey auction with reserve price 𝑟 = 𝜙−1(0).  
 
Natural and straightforward to implement! 

Myerson’s Auction 



The Myerson optimal auction (i.e. maximize virtual surplus) 
extends to all single-parameter mechanism design problems. 
 
 
Our understanding of the revenue-optimal auction for multi-
parameter settings is far less complete. 
 
 
Recent developments: computability of the revenue-optimal 
auction (for a given 𝐹) for certain multi-parameter auction 
problems. 

[Cai,Daskalakis,Weinberg’12,Daskalakis,Weinberg’12, 
Alaei,Fu,Haghpanah,Hartline,Malekian’12] 

 
 

Multi-parameter Settings 



Part 3:  
Revenue, Prophet Inequalities, and Simple Mechanisms 



Myerson’s Auction: A non-identical example:  
Two bidders, not identical: 𝑣1~U[0,2], 𝑣2~U[0,3]. 

𝜙1 𝑣1 = 𝑣1 −
1 − 𝐹1 𝑣1
𝑓1 𝑣1

= 𝑣1 −
1 − 𝑣1/2

1/2
= 2𝑣1 − 2 

 

𝜙2 𝑣2 = 𝑣2 −
1 − 𝐹2 𝑣2
𝑓2 𝑣2

= 𝑣2 −
1 − 𝑣2/3

1/3
= 2𝑣2 − 3 

 

Example 

Myerson Optimal Auction: 

Player 1 wins if 𝜙1 𝑣1 > max 𝜙2 𝑣2 , 0 , i.e. 𝑣1 > 1 and 𝑣1 > 𝑣2 −
1

2
 

Player 2 wins if 𝜙2 𝑣2 > max {𝜙1 𝑣1 , 0}, i.e. 𝑣2 >
3

2
 and 𝑣2 > 𝑣1 +

1

2
 

 
Seems overly complex.  How well could we do with a simpler auction? 



Vickrey Auction with Reserves: 
 Offer each bidder a reserve price 𝑟𝑖 
 Sell to highest bidder who meets his reserve. 
 
Question: How much revenue do we lose by using a 
Vickrey auction rather than the optimal (Myerson) 
auction? 
 
Informal Theorem: In many settings, revenue is within a  
constant factor of the optimal.  

[Hartline, Roughgarden’09, Chawla, Hartline, Malec, Sivan’10]  

 

A Simpler Auction 



Recall: 𝜙𝑖 𝑣𝑖 = 𝑣𝑖 −
1−𝐹𝑖 𝑣𝑖

𝑓𝑖(𝑣𝑖)
  

𝐹𝑖  is regular if 𝜙𝑖 𝑣𝑖  is non-decreasing. 

𝐹𝑖  satisfies the Monotone Hazard Rate assumption (MHR) if 
1−𝐹𝑖 𝑣𝑖

𝑓𝑖(𝑣𝑖)
  is 

non-increasing. 
 

Monotone Hazard Rate 

𝑣 

𝜙(𝑣) - MHR 

𝜙(𝑣) - Regular 

Lemma: if 𝐹𝑖 is MHR, and 
𝑟 = 𝜙−1 0  is the Myerson reserve, 
then 𝑣 ≤ 𝜙 𝑣 + 𝑟 for all 𝑣 ≥ 𝑟. 

v 



Theorem: If all 𝐹𝑖  satisfy MHR, then the revenue of the Vickrey auction 
with reserves 𝑟𝑖 = 𝜙𝑖

−1 0  is a 2-approximation to the optimal revenue. 
[Hartline, Roughgarden’09] 

 
Proof:  𝒙(𝒗), 𝑅(𝒗) – allocation rule / revenue of Vickrey auction.   
 𝒙∗ 𝒗 , 𝑅∗ 𝒗  – allocation rule / revenue of Myerson auction. 
 
By Myerson’s Lemma: 𝐸 𝑅 𝒗 = 𝐸  𝜙𝑖 𝑣𝑖 𝑥𝑖 𝑣𝑖𝑖  
Winners in Vickrey pay at least their reserve: 𝐸 𝑅 𝒗 ≥ 𝐸  𝑟𝑖𝑥𝑖 𝑣𝑖𝑖  
So      2𝐸 𝑅 𝒗 ≥ 𝐸[ 𝑟𝑖 +𝜙𝑖 𝑣𝑖 𝑥𝑖(𝑣𝑖)]𝑖   
  ≥ 𝐸[ 𝑣𝑖𝑥𝑖 𝑣𝑖 ]𝑖   (MHR) 
     ≥ 𝐸[ 𝑣𝑖𝑥𝑖

∗ 𝑣𝑖 ]𝑖   (Vickrey SW > Myerson SW) 
    ≥ 𝐸[𝑅∗ 𝒗 ]  (Myerson SW > Myseron Rev) 

Monotone Hazard Rate 



A Gambling Game: 
n prizes 𝑧1, … , 𝑧𝑛, each prize chosen from distribution 𝐹𝑖  
Prizes revealed to the gambler one at a time. 
After prize 𝑖 is revealed, the gambler must either 
 accept prize 𝑧𝑖  and leave the game, or 
 abandon prize 𝑧𝑖  permanently and continue. 
Goal: maximize value of prize accepted 
 
Optimal strategy: backward induction. 
Simple strategy: pick threshold t, accept first prize with value at least t. 
 
Theorem [Prophet Inequality]: Choosing 𝑡 such that Pr[accept any 
prize] = ½ yields expected winnings at least 

1

2
max
𝑖

𝑧𝑖. 

[Samuel,Cahn’84] 

Aside: Prophet inequality 



Vickrey Auction with Prophet Reserves: 
For 𝑛 bidders and regular distributions, choose a value 𝑅 and set all 
reserves equal to 𝑟𝑖 = 𝜙𝑖

−1(𝑅). 
 
Theorem: If 𝑅 is chosen so that Pr[no sale] = 1/2, then the Vickrey 
auction with reserve prices 𝑟1, 𝑟2, … , 𝑟𝑛 obtains a 2-approximation to 
the optimal revenue. 

   [Chawla, Hartline, Malec, Sivan ’10] 

 
Proof: Direct application of Prophet inequality.   
Our problem: choose threshold 𝑅, so that arbitrary virtual value ≥ 𝑅 is 
a good approximation to the maximum virtual value.  
Prophet inequality: choose threshold 𝑡, so that first prize ≥ 𝑡 is a good 
approximation to the maximum prize. 
 
 

Prophet inequality 



Theorem: Single-item auction with anonymous reserve 
and selling to max-valued bidder yields a 4-approximation 
to the optimal revenue.  

[Hartline,Roughgarden’09] 

 

Theorem: GSP auction with bidder values drawn i.i.d. 
from a regular distribution, with appropriate reserve, is a 
6-approximation of optimal revenue at any BNE.  

[L.,Paes Leme,Tardos’12] 

 
 

Other applications 



Selling Multiple Items 

Problem: Unit-Demand Pricing 

n objects to sell. 

1 buyer, wants at most one item. 

Value for item i is 𝑣𝑖~𝐹𝑖  

 

Goal: Set Prices to Maximize revenue 

 

Problem: Single-Item Auction 

1 object to sell. 

n buyers. 

Value of bidder i is 𝑣𝑖~𝐹𝑖 

 

 

• For single-item auction, Vickrey with “prophet inequality” 
reserves gives a ½ approximation to optimal revenue. 

• Structurally the problems are very similar.  Can we apply similar 
techniques to the unit-demand auction? 



Prophet Inequality Again 

Theorem: Setting prophet reserve prices in the unit-demand pricing 
problem gives a 2-approximation to optimal revenue. 

[Chawla, Hartline, Malec, Sivan’10] 

 

Proof Sketch: Compare with single-item auction.  

• Imagine splitting the single multi-demand bidder into multiple 
single-parameter agents, one per item, but can only serve one. 

• Claim: Optimal revenue in single-item auction ≥ Optimal revenue in 
unit-demand pricing.  (Why? Increased competition!) 

• Claim: Revenue for unit-demand pricing with prophet reserves is at 
least half of optimal revenue for single-item auction. 

– Analysis same as for single-item auction! 



Extending to Multiple Bidders 

Unit-demand Auction Problem: 

n agents, m items.  Each agent wants at most one item. 

Agent i has value 𝑣𝑖𝑗  ~ 𝐹𝑖𝑗 for item 𝑗 

Goal: maximize revenue. 

 

Sequential Posted Price Mechanism: 

• Agents arrive in (possibly arbitrary) sequence  

• Offer each agent a list of prices for the items 

• Each agent chooses his utility-maximizing item 

 



Extending to Multiple Bidders 

Theorem (Informal): In the unit-demand setting with values 
drawn independently for bidders and items, for various settings, 
a sequential posted price mechanism obtains a constant 
approximation to the optimal revenue.  

[Chawla, Hartline, Malec, Sivan’10] 

 

Proof: similar to the single-bidder pricing problem. 

 

Take-away: setting high prices in accordance with the prophet 
inequality reduces competition, thereby simplifying analysis. 



Extensions 

Multi-unit auctions with budget-constrained agents. 
[Chawla, Malec, Malekian’11] 

 

General reductions from multi-parameter auctions to single-
agent pricing problems. 

[Alaei’11] 

 

Future Work: 

Extend the class of multi-parameter auctions for which we can 
obtain constant-factor approximations to revenue. 



Part 4:  
Prior-Independent Revenue Maximization 



Priors vs. Additional Bidders 

Question: How useful is knowing the prior distribution? 

 

Theorem: for iid, regular, single-item auctions, the Vickrey 
auction on 𝑛 + 1 bidders (and no reserve) generates higher 
expected revenue than the optimal auction on 𝑛 bidders. 

     [Bulow, Klemperer’96] 

 

 

If the mechanism designer doesn’t have access to prior 
distribution, he can do just as well by recruiting one more bidder. 



Special Case: 1 Bidder 
Theorem: The Vickrey auction with 2 bidders generates at least as the 
optimal revenue from a single bidder, for regular distributions. 

 

Simple Proof: [Dhangwatnotai, Roughgarden, Yan’10] 

For single bidder, consider Revenue as a function of probability of sale. 

 

• Vickrey auction: each bidder views the other as a randomized reserve. 
• Vickrey revenue = 2 x E[random reserve revenue] 
• E[random reserve revenue] ≥  ½ optimal reserve revenue 

0 1 q 

R(q) 

Optimal Revenue for single bidder 

Expected value of random 
reserve revenue. 



Example: Digital Goods 

Problem: Digital Goods 

n identical objects to sell, n buyers. 

Each buyer wants at most one object. 

Each buyer has value 𝑣𝑖~𝐹. 

 

Goal: Maximize revenue 

 

Optimal auction: Offer each agent Myerson reserve 𝜙−1(0). 

 

How well can we do with a prior-independent mechanism? 



Example: Digital Goods 

Single-Sample Mechanism: 

1. Pick an agent i at random 

2. Offer every other agent price 𝑣𝑖 

3. Do not sell to agent 𝑖 

 

Theorem: For iid, regular distributions, the single sample auction 
with 𝑛 + 1 bidders is a 2-approximation to the optimal revenue 
with 𝑛 bidders. 

[Dhangwatnotai, Roughgarden, Yan’10] 

 

Proof: Follows from the geometric argument for n=1. 



Further Work 

• Non-identical distributions [Dhangwatnotai, Roughgarden, Yan’10] 

 

• Online Auctions [Babaioff, Dughmi, Kleinberg, Slivkins’12] 

 

• Matroids, other complex feasibility constraints [Hartline, Yan’11] 

 

• Alternative approach: Limited-Supply Mechanisms 
[Roughgarden, Talgam-Cohen, Yan’12] 

 



Summary 

• We surveyed recent results in Bayesian mechanism design. 

 

• Social Welfare: 
– General transformations from approximation algorithms to BIC 

mechanisms. 

– Mechanisms with simple greedy allocation rules tend to have good 
social welfare at Bayes-Nash equilibria. 

 

• Revenue: 
– Optimal auctions tend to be complex; simple auctions can often obtain 

constant approximation factors (even in multi-parameter settings). 

– It is sometimes possible to approximate the optimal revenue with a 
prior-independent mechanism, e.g. via sampling techniques. 


