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This is a solution to the editor’s puzzle from issue 8.2 of SIGecom Exchanges. The puzzle is about

finding a Bayesian equilibrium for a Dutch auction which can end according to a stochastic price

schedule. The full puzzle [Conitzer 2009] can be found online at:
http://www.sigecom.org/exchanges/volume 8/2/puzzle.pdf.
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The puzzle asks us to find a Bayesian equilibrium for a Dutch auction with N
bidders, where bidders’ values are symmetrically and independently distributed on
the interval [0, 1].1 Denote by F (x) the cumulative distribution function according
to which values are drawn, with f being the corresponding probability density
function. The twist is that the object considered for sale is the Dutch auction
clock itself, and it might break during the auction process. Let W (p) describe the
breaking probability function, i.e. the probability that the auction clock breaks after
it reaches price p. If the clock breaks before the auction ends, its value drops to 0
and no bidder will buy it. The model, the distributions and the breaking schedule
are common knowledge.

Interesting as it may be, the greatest virtue of the unstable Dutch auction clock
story lies in its ability to provide us with intuitions for a much more widespread
phenomenon, namely reserve prices. A discrete breaking schedule with only one
value at which the clock breaks is completely equivalent to a known reserve price in
a first-price sealed-bid auction. More general breaking schedules are equivalent to
a hidden reserve price which is selected according to a known distribution. While it
seems unlikely for a revenue maximizing auctioneer to use this type of mechanism
(instead of the optimal auction), it is certainly plausible under mild deviations from
the classic framework (e.g. [Li and Tan 2000]), and in fact hidden reserve prices are
quite widespread in many real auction environments. Thus, the two approaches I
present below apply equally to the original story, as well as to computing Bayesian
equilibria when there is uncertainty about reserve prices.

1The author thanks Sergiu Hart, Déborah Marciano, Ilan Nehama, and Ran Shorrer for helpful

discussions and suggestions.
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1. THE CASE OF F (X) = XM AND W (P ) = PK

Consider for a moment the case of N = 2, uniform values distribution F (x) = x,
and a uniform breaking schedule W (p) = p. Assuming the existence of a symmetric
and continuously differentiable increasing bidding function β(v), we can write the
utility of type v, when trying to bid as if she was of type r:

u(v, r) = (v − β(r))F (r)W (β(r)) = (v − β(r)) rβ(r) (1)

In equilibrium the first-order condition when differentiating according to r should
be zero, and therefore we get:

(v − β(v)) (β(v) + vβ′(v))− β′(v)vβ(v) = 0 (2)

To solve this differential equation, suppose β(v) = av, and try to solve for a:

(v − av)(av + av)− a2v2 = 0⇒ av2(2− 3a) = 0⇒ β(v) =
2

3
v (3)

It is easy to check that the second order condition holds as well. It is not surprising
that the equilibrium bidding function is strictly above β(v) = 1

2v (the equilibrium
bidding function without the breaking schedule), because each bidder wishes to
raise her bid in the presence of the possibility to lose the auction not only to the
competition, but also due to the stochastic breaking.

Furthermore, the above function should remind us of the symmetric equilibrium
bidding function in a regular Dutch auction with N = 3 and F (x) = x. The
reason the two cases are giving us the same bidding function is that we can treat
the breaking schedule as if it is induced by actions of a non-strategic extra player,
which bids uniformly on the unit interval. Since this type of bid can be thought of
as multiplying the equilibrium strategy of a third player by a constant factor, the
other players’ maximization is the same as in the 3-person Dutch auction. This
line of thought guides us in extending the solution for the slightly more general
case of N bidders with uniform values, and breaking function of W (p) = pk (for
any real number k > 0). We can treat the breaking schedule as if there were k
more players (note that k can be non-integral). Specifically, we get the following
symmetric Bayesian equilibria for N players:

W1(p) = p ⇒ β1(v) =

(
N

N + 1

)
v (4)

W2(p) = p2 ⇒ β2(v) =

(
N + 1

N + 2

)
v (5)

W3(p) =
√
p ⇒ β3(v) =

(
N − 1

2

N + 1
2

)
v (6)

Similarly, if the players’ values are drawn according to F (x) = xm, we can treat
the breaking schedule W (p) = pk as if there were k

m more bidders in the game.
Technically, we have each bidder maximize over r:

u(v, r) = (v − β(r))FN−1(r)W (β(r)) = (v − β(r)) rm(N−1)βk(r) (7)

And it is easy to verify that the equilibrium given by β(v) =
(

m(N−1)+k
m(N−1)+k+1

)
v

satisfies the first-order condition.
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2. THE GENERAL CASE

In this section I assume, for the sake of mathematical convenience, that if the clock
breaks on price p, then a bidder that suggested price p still wins the object at its
original value. Imagine that W (p) is given by a simple step function of the form:

W (p) =

{
0 if p ≥ p̂
1 if p < p̂

(8)

for some p̂ ∈ (0, 1). In this case bidders with values below p̂ can bid in equilibrium
anything below p̂. We can solve for the rest of the bidders in a similar manner to
the way we usually solve, with the boundary condition β(p̂) = p̂. This is exactly
parallel to the way we solve for first-price auction with a reserve price (see, for
example, [Krishna 2002]).

The analysis becomes slightly trickier if we consider a breaking schedule made
up of discrete jumps. Let {ri}Ri=0 be a division of the unit interval, i.e. 0 = r0 <

r1 < . . . < rR = 1, and let {qi}R−1i=0 be positive numbers such that
∑R
i=0 qi ≤ 1.

The discrete breaking schedule is given by:

W (p) =

{
0 if p = 1∑R−1
i=j qi if p ∈ [qj , qj+1)

(9)

In this case, we can construct an equilibrium using the following algorithm:

Algorithm 2.1. Initialize t0 = 0. For k = 0 . . . R− 1:
Step (k.1): Find the continuously increasing symmetric bidding function βk(v) for
bidders with values [tk, 1] (distributed according to F |[tk,1]), with the boundary
condition βk(tk) = rk.
Step (k.2): Within [tk, 1], find the smallest value such that (v − βk(v))W (rk) ≤
(v − rk+1)W (rk+1). Set tk+1 to this value. Note that if βk(1) > rk+1 this must
hold for some value (due to continuity). If no such value was found, set tk+1 = tk,
βk+1 = βk, and skip directly to step ((k + 1).2).
The proposed equilibrium function is given by:

β(v) = βmax{l|v≥tl}(v) (10)

Lemma 2.2. Algorithm 2.1 produces a symmetric Bayesian equilibrium for the
Dutch auction with the discrete breaking schedule W (p).

Proof. First note the algorithm outputs a monotonically increasing and piece-
wise continuous function, where each interval of continuity is a part of a symmetric
Bayesian equilibrium found throughout the process. All intervals are of the form
[a, b), and all types which are interior to any of the intervals satisfy first-order
conditions for being in equilibrium. Every bidder at the lower end of an interval
is indifferent between bidding its current bid, or bidding the supremum of bids of
players with lower values. Therefore she strictly prefers it to bidding as any of the
bidder on the interval below it. It is both intuitive and easy to show that given
three types vL < vM < vH , incentive compatibility of type vh with regard to vM ,
and of type vM with regard to vL, leads to incentive compatibility of type vH with
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regard to vL. Use P (b) as a shortcut for Pr(win | bid = b), and suppose:

(vH − β(vH))P (β(vH)) ≥ (vH − β(vM ))P (β(vM )) (11)

(vM − β(vM ))P (β(vM )) ≥ (vM − β(vL))P (β(vL)) (12)

then:

(vH − β(vL))P (β(vL)) ≤ (vH − vM )P (β(vL)) + (vM − β(vM ))P (β(vM )) ≤
(vH − vM ) (P (β(vL))− P (β(vM ))) + (vH − β(vH))P (β(vH)) ≤ (13)

(vH − β(vH))P (β(vH))

And this gives us “downward” incentive compatibility. The same argument applies
for “upward” incentive compatibility (using the minimality of the boundary types
in the algorithm). The equilibrium condition is met because no bidder wants to bid
outside Range(β).

Lemma 2.3. Given individual value distribution F (·) and two breaking schedules
W1(p) and W2(p) such that ‖W1 −W2‖∞ < ε for some ε > 0, then any symmetric
Bayesian equilibrium β(·) for the Dutch auction with breaking schedule W1(p) is
a symmetric 2ε-Bayesian equilibrium for the Dutch auction with breaking schedule
W2(p).

Proof. Suppose type v considers a deviation to play b′ ∈ supp(β) instead of
β(v) (deviating to b′ /∈ supp(β) can always be improved by deviating to something
in the support). Then we must have:

(v − β(v)) · Fn−1 (v) ·W2(β(v)) ≥
(v − β(v)) · Fn−1 (v) ·W1(β(v))− (v − β(v)) · Fn−1 (v) · ε ≥

(v − b′) · Fn−1
(
β−1(b′)

)
·W1(b′)− ε ≥ (14)

(v − b′) · Fn−1
(
β−1(b′)

)
·W2(b′)− (v − b′) · Fn−1

(
β−1(b′)

)
· ε− ε ≥

(v − b′) · Fn−1
(
β−1(b′)

)
·W2(b′)− 2ε

Showing that no bidders gain more than 2ε by deviating.

Using both lemma 2.2 and lemma 2.3, we can find a symmetric ε-Bayesian equilib-
rium, for any ε > 0, for a Dutch auction with an arbitrary breaking schedule W (p)
by taking a sufficiently close discrete approximation of W (p), and then running
algorithm 2.1.

Proposition 2.4. Assume that W (p) is continuously differentiable on [0, 1], and
there is a sequence of symmetric εn-Bayesian equilibria, {βεn(·)}∞n=1 such that εn →
0 and βεn(·) pointwise converges to some β(·).2 Then β(·) is a symmetric Bayesian
equilibrium of the Dutch auction with breaking schedule W (p) iff β(·) is strictly
increasing.

Proof. Since β(·) is monotonically increasing, then not being strictly increasing
implies that there is some interval on which β(·) is constant. But, this implies
that the highest type on this interval would like to offer slightly more to gain a

2Helly’s theorem [Brunk et al. 1956, Theorem 2] insures us that such a sequence indeed exists.
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significant increase in her utility. As for the opposite direction, suppose β(·) is
strictly increasing. Denote Ŵ = maxx∈[0,1] |W ′(x)|. For every type v and every
possible deviation r, for every m select Km such that for every k > Km we have
|βεk(v)− β(v)| < 1

m and |βεk(r)− β(r)| < 1
m , we must have then:

(v − β(v))Fn−1(v)W (β(v)) ≥ (v − βεk(v))Fn−1(v)W (β(v))− 1
m ≥

(v − βεk(v))Fn−1(v)W (βεk(v))− 1+Ŵ
m ≥

(v − βεk(r))Fn−1(r)W (βεk(r))− 1+Ŵ
m − εk ≥ (15)

(v − β(r))Fn−1(r)W (βεk(r))− 2+Ŵ
m − εk ≥

(v − β(r))Fn−1(r)W (β(r))− 2+2Ŵ
m − εk

As εk → 0 we get that the gain in utility by pretending to be type r is no more

then 2+2Ŵ
m , and since m was arbitrarily picked we get that there is no incentive to

deviate from β(·). There is no need to check other deviation (to bids which are not
used in equilibrium by any type) since it is always better to bid as the highest type
(due to continuity and no singletons in distributions).

REFERENCES

Brunk, H. D., Ewing, G. M., and Utz, W. R. 1956. Some helly theorems for monotone functions.

Proceedings of the American Mathematical Society 7, 5, 776–783.

Conitzer, V. 2009. Editor’s Puzzle: A Dutch Dutch Auction Clock Auction. ACM SIGecom
Exchanges 8, 2 (Dec.).

Krishna, V. 2002. Auction Theory. Academic Press, San Diego.

Li, H. and Tan, G. 2000. Hidden Reserve Prices with Risk Averse Bidders. mimeo, Penn State

University.

ACM SIGecom Exchanges, Vol. 10, No. 1, March 2011, Pages 40–44


