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In December 2009 and November 2010, the first and second Lemonade Stand game competitions
were held. In each competition, 9 teams competed, from University of Southampton, University

College London, Yahoo!, Rutgers, Carnegie Mellon, Brown, Princeton, et cetera. The competition,

in the spirit of Axelrod’s iterated prisoner’s dilemma competition, which addressed whether or
not you should cooperate, asks the questions, “how should you cooperate, and with whom?” The

third competition (whose results will be announced at IJCAI 2011) is open for submissions until

July 1st, 2011.

Categories and Subject Descriptors: B.6.1 [Logic Design]: Design Styles—Logic Arrays

General Terms: Economics, Experimentation

Additional Key Words and Phrases: Templates, Skeletons, Things

1. INTRODUCTION

The Lemonade Stand Game was introduced on the Yahoo! Group lemonadegame:

It is summer on Lemonade Island, and you need to make some cash. You
decide to set up a lemonade stand on the beach (which goes all around
the island), as do two others. There are twelve places to set up around
the island like the numbers on a clock. Your price is fixed, and all people
go to the nearest lemonade stand. The game is repeated. Every night,
everyone moves under cover of darkness (simultaneously). There is no
cost to move. After 100 days of summer, the game is over. The utility
of the repeated game is the sum of the utilities of the single-shot games.

If all the lemonade stands are at different spots, then your utility is the distance
to the person clockwise you plus the distance to the person counterclockwise you,
measured in spots. For example, if Alice sets up at the 3 o’clock location, Bob
sets up at 10 o’clock, and Candy sets up at 6 o’clock, then first we arrange them
clockwise from 1 o’clock (Alice, Candy, then Bob): there are 3 spots clockwise
between Alice and Candy, 4 spots clockwise between Candy and Bob, and 5 spots
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clockwise between Bob and Alice. Therefore, Alice gets $8, Bob gets $9, and Candy
gets $7. If all the lemonade stands are located at the same spot, everybody gets
$8. If exactly two lemonade stands are located at the same spot, the two collocated
stands get $6 each and the loner gets $12. So, the total utility is always $24.

Given this call, nine teams competed each year, from University of Southampton,
University College London [Sykulski et al. 2010; de Cote et al. 2010], Yahoo!, Rut-
gers [Wunder et al. 2010], Carnegie Mellon [Reitter et al. 2010], Brown, Princeton,
et cetera.

2. OBJECTIVES OF RUNNING THE TOURNAMENT

In competitions in two-player zero-sum games, a conventional approach is to at-
tempt to approximate the equilibrium, via methods such as minimax search or
abstraction and equilibrium computation. However, this method assumes that the
game is solvable (that equilibrium strategies are interchangeable [Nash 1951]) or at
least that combining strategies from different equilibria yields reasonable approxi-
mations of equilibria. In the lemonade stand game, combining equilibria can yield
highly suboptimal (even worst-case) strategy profiles, and therefore, this competi-
tion forces players to focus not on computing equilibria, but on selecting equilibria,
and “convincing” others to play their equilibria.

The competition was modeled in part on Axelrod’s famous iterated prisoner’s
dilemma competition [Axelrod 1980; 1984]. In the prisoner’s dilemma, how to
cooperate is clear: there is an action labeled “cooperate”. Also, who to cooperate
with is clear: one plays with one opponent at a time. However, in the lemonade
stand game (which is a type of location game), there are many ways to cooperate.
The simplest and most used was to play on opposite sides of the circle. However,
there are 12 such configurations for 2 players, and 36 such configurations overall.
So which cooperation specifically and with whom is critical.

Before running the competition, I ran preliminary experiments where a constant
strategy (which played a single action the whole game) won a tournament against a
variety of sophisticated AI programs. Thus, I knew that traditional methods would
not fare well. This information was shared with the competitors.

3. STABLE AND UNSTABLE COOPERATION

Before the first competition, we wanted to see if players could collaborate: we had
two types of collaboration in mind. For the sake of illustration, assume Alice and
Bob are collaborating against Candy.

(1) stable: Could Alice and Bob collaborate by playing opposite each other, forcing
Candy to get 6 (the safe value)?

(2) unstable: Could Alice and Bob collaborate such that Candy got less than 6
utility (the safe value)? E.g., a “sandwich”: Candy is at 2 o’clock and not
moving; Alice moves to 1 o’clock and Bob moves to 3 o’clock.

One can think of these as two variants of Stackelberg equilibria for the game where
Alice and Bob play as one in a zero-sum game against Candy: in the first, Alice
and Bob are the leaders; in the second, Candy is the leader.
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In each year, nine teams submitted bots.1 Let us begin by counting the percent-
age of rounds where one player got below the safe value (unstable cooperation).
In general, for three players playing uniformly at random, there is a 5

12 ≈ 41.7%
chance that someone will get below the safe value on a given round. In the first
competition, this occured in 14.8% of the rounds. In the second competition, this
occurred in 1.6% of the rounds. Thus, even if such opportunities exist, players are
not exploiting them. It is also possible that the opportunity cost (e.g., not pursuing
a stable cooperation) outweighs the short-term gains of an unstable cooperation.

The second kind of cooperation is where two of the bots play opposite one another
(stable cooperation). By this definition, everyone playing uniformly at random
will generate this cooperation approximately 22.9% of the rounds. In the first
competition, there was cooperation 67.6% of the rounds. In the second competition,
there was cooperation 96.7% of the rounds. Moreover, if you ignore the utilities
for all rounds where no cooperation occurred, the ranking remains the same in
both competitions. Thus the competitions were decided on two factors: amount of
cooperation and the amount of utility received during cooperation.

4. CONCLUSION

Can a bot agree upon an equilibrium in an unsolvable game with another bot
designed by someone else? In this game we have empirically demonstrated that
this is possible, which raises the question, what about other unsolvable games?
Right now the rules of the 2011 competition are being finalized. The deadline for
submitting bots will be July 1, 2011. In the new competition, we will specify a
distribution over location games on a circle instead of a single game. The results
will be presented at the TADA workshop at IJCAI 2011.

The iterated prisoner’s dilemma competition of Axelrod was interesting and pow-
erful because it was simple. The lemonade stand game was a natural next step.
Further steps will involve distributions over more complex games, communication,
and lifelong learning; moving toward answering a fundamental question in multi-
agent learning, “Machines can work for us, but can they work with us?”
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Fig. 1. The performance of the teams during the 2009 (a) and the 2010 (b) competitions. The
net utility is the average utility per round minus 8, so that the average performance is zero.
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