
Algorithmic Rationality: Adding Cost of
Computation to Game Theory

JOSEPH Y. HALPERN and RAFAEL PASS

Cornell University

We summarize our work on a general game-theoretic framework for reasoning about strategic

agents performing possibly costly computation. In this framework, many traditional game-

theoretic results (such as the existence of a Nash equilibrium) no longer hold. Nevertheless,
we can use the framework to provide psychologically appealing explanations to observed behavior

in well-studied games (such as finitely repeated prisoner’s dilemma and rock-paper-scissors).

Categories and Subject Descriptors: F.m [Theory of Computation]: Miscellaneous; I.2.11

[Artificial Intelligence]: Distributed Artificial Intelligence—Multiagent systems; J.4 [Social
and Behavioral Sciences]: Economics

General Terms: Economics, Theory

Additional Key Words and Phrases: Nash equilibrium, costly computation

1. INTRODUCTION

Consider the following game. You are given a random odd n-bit number x and
you are supposed decide whether x is prime or composite. If you guess correctly
you receive $2, if you guess incorrectly you instead have to pay a penalty of $1000.
Additionally you have the choice of “playing safe” by giving up, in which case you
receive $1. In traditional game theory, computation is considered “costless”; in
other words, players are allowed to perform an unbounded amount of computation
without it affecting their utility. Traditional game theory suggests that you should
compute whether x is prime or composite and output the correct answer; this is the
only Nash equilibrium of the one-person game, no matter what n (the size of the
prime) is. Although for small n this seems reasonable, when n grows larger most
people would probably decide to “play safe”—as eventually the cost of computing
the answer (e.g., by buying powerful enough computers) outweighs the possible
gain of $1.

The importance of considering such computational issues in game theory has
been recognized since at least the work of Simon [1955]. There have been a number
of attempts to capture various aspects of computation. Perhaps most relevant to
our work is the work of Rubinstein [1986], who assumed that players choose a finite
automaton to play the game rather than choosing a strategy directly; a player’s
utility depends both on the move made by the automaton and the complexity of
the automaton (identified with the number of states of the automaton). Intuitively,
automata that use more states are seen as representing more complicated proce-
dures. (See [Kalai 1990] for an overview of the work in this area in the 1980s, and
[Ben-Sasson et al. 2007] for more recent work.)

As in Rubinstein’s work, we view players as choosing a machine, but for us
the machine is a Turing machine, rather than a finite automaton. We associate

ACM SIGecom Exchanges, Vol. 10, No. 2, June 2011, Pages 9–15

10 · J. Y. Halpern and R. Pass

a complexity, not just with a machine, but with the machine and its input. The
complexity could represent the running time of or space used by the machine on
that input. The complexity can also be used to capture the complexity of the
machine itself (e.g., the number of states, as in Rubinstein’s case) or to model the
cost of searching for a new strategy to replace one that the player already has.
For example, if a mechanism designer recommends that player i use a particular
strategy (machine) M , then there is a cost for searching for a better strategy;
switching to another strategy may also entail a psychological cost. By allowing the
complexity to depend on the machine and the input, we can deal with the fact
that machines run much longer on some inputs than on others. A player’s utility
depends both on the actions chosen by all the players’ machines and the complexity
of these machines.

In this setting, we can define Nash equilibrium in the obvious way. However, as
we show by a simple example (rock-paper-scissors), if randomizing is costly, a Nash
equilibrium may not always exist. Other standard results in game theory, such
as the revelation principle (which, roughly speaking, says that there is always an
equilibrium where players truthfully report their types, i.e., their private informa-
tion [Myerson 1979; Forges 1986]) also do not hold. We view this as a feature. We
believe that taking computation into account should force us to rethink a number
of basic notions.

On the positive side, we show that in a precise sense, if randomizing is free, then
(under minimal assumptions) a Nash euqilibrium is guaranteed to exist. Moreover,
as we show by example, despite the fact that Nash equilibrium may not always
exist, taking computation into account leads to Nash equilibria that give insight
into and explain behavior in a number of games, such as cooperation in finitely
repeated prisoner’s dilemma, and biases in information processing, in a psycholog-
ically appealing way. Indeed, as shown by our results, many concerns expressed by
the emerging field of behavioral economics (pioneered by Kahneman and Tversky
[1981]) can be accounted for by simple assumptions about players’ cost of compu-
tation, without resorting to ad hoc cognitive or psychological models.

In the remainder of this note, we briefly sketch the definition and give a few
examples of its use. We refer the reader to [Halpern and Pass 2008; 2009; 2010a;
2010b] for further details.

2. THE DEFINITION AND SOME EXAMPLES

Recall that in a standard Bayesian game, each agent i has a type ti chosen from
a type space Ti. An agent’s type can be viewed as describing the agent’s private
information. It is assumed that there is a commonly known distribution Pr on
the type space T1 × . . . × Tn. Each agent i then chooses a strategy σi which is a
function from Ti to Ai, the set of possible actions for agent i; intuitively, what agent
i does depends on her type. Then agent i’s utility ui depends on the the profile of
types ~t and the profile of actions chosen ~a. Thus, a Bayesian game is characterized
by a tuple ([m], T, A,Pr, ~u), where [m] is the set of players, T is the type space,
A = A1 × . . .×An is the set of action profiles, and ~u is the utility function profile,
where ui : T ×A→ IR.

In a Bayesian machine game, we still have each player i chooses a Turing ma-

ACM SIGecom Exchanges, Vol. 10, No. 2, June 2011, Pages 9–15

Algorithmic Rationality · 11

chine (TM) Mi from some set Mi of Turing machines. The output Mi(ti) that
results from running Mi on input ti, player i’s type, is an action in Ai. (We as-
sume that there is a special action ω in Ai that is played if Mi does not halt on
input ti.) In addition, each player i has a complexity function Ci that associates
with each TM Mi and input ti its complexity, which is just a natural number. As
we said earlier, the complexity could represent, among other things, the running
time of Mi on ti, the space used, the number of states in Mi, or the cost of “find-
ing” strategy Mi. Player i’s utility depends on the the profile ~t, the action profile
(M1(t1), . . . ,Mn(tn)) (where {1, . . . , n} is the set of players), and the tuple of com-
plexities (C1(M1, t1), . . . , Cn(Mn, tn)).1 The fact that i’s utility can depend on the
whole tuple of complexitities allows for the possibility that, for example, i gains
high utility by having a faster running time than j.

In this setting, a strategy associates with each type a TM. Then i’s expected
utility if the profile of TM’s (σ1, . . . , σn) is chosen is just∑

~t∈T

Pr(~t)ui((σ1(t1))(t1), . . . , (σn(tn))(tn)), (C1(σ1(t1), t1), . . . , Cn(σn(tn), tn))).

Note that σi(ti)(ti) is the action output by the TM σ(ti). The definition of Nash
equilibrium is just as usual: a tuple of strategies (σ1, . . . , σn) is a Nash equilibrium
if no player i can improve her expected utility by deviating to a different strategy.

The following example shows that a Nash equilibrium may not always exist.

Example 2.1 Rock-paper-scissors. Consider the 2-player Bayesian game of
roshambo (rock-paper-scissors). Here the type space has size 1 (the players have
no private information). We model playing rock, paper, and scissors as playing 0,
1, and 2, respectively. The payoff to player 1 of the outcome (i, j) is 1 if i = j ⊕ 1
(where ⊕ denotes addition mod 3), −1 if j = i ⊕ 1, and 0 if i = j. Player 2’s
playoffs are the negative of those of player 1; the game is a zero-sum game. As is
well known, the unique Nash equilibrium of this game has the players randomizing
uniformly between 0, 1, and 2.

Now consider a machine game version of roshambo. Suppose that we take the
complexity of a deterministic strategy to be 0, and the complexity of a strategy that
uses randomization to be 1, and take player i’s utility to be his payoff in the un-
derlying Bayesian game minus the complexity of his strategy. Intuitively, programs
involving randomization are more complicated than those that do not randomize.
With this utility function, it is easy to see that there is no Nash equilibrium. For
suppose that (M1,M2) is an equilibrium. If M1 uses randomization, then 1 can do
better by playing the deterministic strategy j ⊕ 1, where j is the action that gets
the highest probability according to M2 (or is the deterministic choice of player 2
if M2 does not use randomization). Similarly, M2 cannot use randomization. But
it is well known (and easy to check) that there is no equilibrium for roshambo with
deterministic strategies.

Charging for randomization does not seem so unreasonable. It is well known
that people have difficulty simulating randomization; we can think of the cost for

1We are simplifying a bit here. A TM can randomize, so also gets as input a random string. The

complexity can thus depend on the TM chosen, the input, and the random string.

ACM SIGecom Exchanges, Vol. 10, No. 2, June 2011, Pages 9–15

12 · J. Y. Halpern and R. Pass

randomizing as capturing this difficulty. Interestingly, there are roshambo tour-
naments (indeed, even a Rock Paper Scissors World Championship), and books
written on roshambo strategies [Walker and Walker 2004]. Championship players
are clearly not randomizing uniformly (they could not hope to get a higher pay-
off than an opponent by randomizing). Our framework provides a psychologically
plausible account of this lack of randomization.

Example 2.1 shows that a Nash equilibrium may not always exist. In [Halpern
and Pass 2008], we show that, in a sense, the fact that we charge for randomization
is the reason for this. Among other things, we show that if the cost of a random-
ized strategy is the convex combination of the cost of the pure strategies involved,
and the game itself is computable in a precise show, then a Nash equilibrium is
guaranteed to exist.

The remaining examples give other instances where thinking computationally can
give psychologically plausible explanations for behaviors in games.

Example 2.2. Consider finitely repeated prisoner’s dilemma (FRPD), where
prisoner’s dilemma is played for some fixed number N of rounds. As is well known,
the only Nash equilibrium is to always defect; this can be seen by a backwards
induction argument. This seems quite unreasonable. And, indeed, in experiments,
people do not always defect [Axelrod 1984]. In fact, quite often they cooperate
throughout the game. There have been many attempts to explain cooperation in
FRPD in the literature; see, for example, [Kreps et al. 1982; Neyman 1985; Pa-
padimitriou and Yannakakis 1994]. In particular, [Neyman 1985; Papadimitriou
and Yannakakis 1994] demonstrate that if players are restricted to using a finite
automaton with bounded complexity, then there exist equilibria that allow for co-
operation. However, the strategies used in those equilibria are quite complex, and
require the use of large automata. By using our framework, we can provide a
straightforward explanation.

Consider the tit for tat strategy, which proceeds as follows: a player cooperates
at the first round, and then at round m + 1, does whatever his opponent did at
round m. Thus, if the opponent cooperated at the previous round, then you reward
him by continuing to cooperate; if he defected at the previous round, you punish
him by defecting. If both players play tit for tat, then they cooperate throughout
the game. The best response to tit for tat is easily seen to be cooperating for the
first N − 1 rounds, then defecting at the last round. But this requires counting
up to N , which in turn requires some use of computation. Suppose that the cost
of this computation is more than the gain from defection. In that case, the best
response to tit for tat is tit for tat.

Example 2.3 Biases in information processing. Psychologists have observed
many systematic biases in the way that individuals update their beliefs as new
information is received (see [Rabin 1998] for a survey). In particular, a “first-
impressions-matter” bias has been observed: individuals put too much weight on
initial signals and less weight on later signals. As they become more convinced
that their beliefs are correct, many individuals even seem to simply ignore all in-
formation once they reach a confidence threshold. Several papers in behavioral
economics have focused on identifying and modeling some of these biases (see,
e.g., [Rabin 1998] and the references therein, [Mullainathan 2002], and [Rabin and

ACM SIGecom Exchanges, Vol. 10, No. 2, June 2011, Pages 9–15

Algorithmic Rationality · 13

Schrag 1999]). In particular, Mullainathan [2002] makes a potential connection
between memory and biased information processing, in a model which makes sev-
eral explicit (psychology-based) assumptions on the memory process (e.g., that the
agent’s ability to recall a past event depends on how often he has recalled the
event in the past.) More recently, Wilson [2002] has presented an elegant model of
bounded rationality (where agents are described by finite automata) that (among
other things) can explain why agents eventually choose to ignore new information;
her analysis, however, is very complex and holds only in the limit (specifically, in
the limit as the probability ν that a given round is the last round goes to 0). As we
now show, the first-impression-matters bias can be easily explained if we assume
that here is a small cost for “absorbing” new information.

Consider the following simple game (which is very similar to one studied in [Mul-
lainathan 2002; Wilson 2002]). The state of nature is a bit b which is 1 with
probability 1/2. An agent receives as his type a sequence of independent samples
s1, s2, . . . , sn where si = b with probability ρ > 1/2. The samples corresponds to
signals the agents receive about b. An agent is supposed to output a guess b′ for
the bit b. If the guess is correct, he receives 1−mc as utility, and −mc otherwise,
where m is the number of bits of the type he read, and c is the cost of reading a
single bit (c should be thought of the cost of absorbing/interpreting information).
It seems reasonable to assume that c > 0; signals usually require some effort to
decode (such as reading a newspaper article, or attentively watching a movie). If
c > 0, it easily follows by the Chernoff bound that after reading a certain (fixed)
number of signals s1, . . . , si, the agents will have a sufficiently good estimate of ρ
that the marginal cost of reading one extra signal si+1 is higher than the expected
gain of finding out the value of si+1. That is, after processing a certain number
of signals, agents will eventually disregard all future signals and base their output
guess only on the initial sequence. In fact, doing so stricly dominates reading more
signals.

3. DISCUSSION

We have defined a general approach to taking computation into account in game
theory that subsumes previous approaches. This opens the door to a number of
exciting research directions; see [Halpern and Pass 2008] for a list. Perhaps the key
issue is that, in the framework described above, we have assumed that the agents
understand the costs associated with each Turing machine. That is, they do not
have to do any “exploration” to compute the costs. In [Halpern and Pass 2010b],
we model uncertainty regarding complexity by letting the complexity function take
also the state of nature as input. However, even if we do this, we are assuming
that agents can compute the probability of (or, at least, are willing to assign a
probability to) events like “TM M will halt in 10,000 steps” or “the output of
TM M solves the problem I am interested in on this input”. But calculating such
probabilities itself involves computation, which might be costly. Similarly, we do
not charge the players for computing which machine is the best one to use in a
given setting, or for computing the utility of a given machine profile. It would
be relatively straightforward to extend our framework so that the TMs computed
probabilities and utilities, as well as actions; this would allow us to “charge” for

ACM SIGecom Exchanges, Vol. 10, No. 2, June 2011, Pages 9–15

14 · J. Y. Halpern and R. Pass

the cost of computing probabilities and utilities. However, once we do this, we
need to think about what counts as an “optimal” decision if a decision maker does
not have a probability and utility, or has a probability only on a coarse space. A
related problem is that we have assumed that the players have all options available
“for free”. That is, the players choose among a set of TMs which is given ex ante,
and does not change. But, in practice, it may be difficult to generate alternatives.
(Think of a chess player trying to generate interesting lines of play, for example.)
Again, we can imagine charging for generating such alternatives. We are currently
exploring charging for computation costs in extensive-form games in ways that take
these concerns into account, using ideas related to awareness in games (see, e.g.,
[Heifetz et al. 2007; Halpern and Rêgo 2006]).

Acknowledgments:

Halpern supported in part by NSF grants ITR-0325453, IIS-0534064, IIS-0812045,
and IIS-0911036, and by AFOSR grants FA9550-08-1-0438 and FA9550-09-1-0266,
and ARO grant W911NF-09-1-0281. Pass supported in part by a Microsoft New
Faculty Fellowship, NSF CAREER Award CCF-0746990, AFOSR Award FA9550-
08-1-0197, and BSF Grant 2006317.

REFERENCES

Axelrod, R. 1984. The Evolution of Cooperation. Basic Books, New York.

Ben-Sasson, E., Kalai, A., and Kalai, E. 2007. An approach to bounded rationality. In

Advances in Neural Information Processing Systems 19 (Proc. of NIPS 2006). 145–152.

Forges, F. 1986. An approach to communication equilibria. Econometrica 54, 6, 1375–85.

Halpern, J. Y. and Pass, R. 2008. Algorithmic rationality: Game theory with costly computa-
tion. Unpublished manuscript.

Halpern, J. Y. and Pass, R. 2009. Sequential equilibrium and perfect equilibrium in games of

imperfect recall. Unpublished manuscript.

Halpern, J. Y. and Pass, R. 2010a. Game theory with costly computation. In Proc. First

Symposium on Innovations in Computer Science.

Halpern, J. Y. and Pass, R. 2010b. I don’t want to think about it now: Decision theory with

costly computation. In Principles of Knowledge Representation and Reasoning: Proc. Twelfth
International Conference (KR ’10).

Halpern, J. Y. and Rêgo, L. C. 2006. Extensive games with possibly unaware players. In
Proc. Fifth International Joint Conference on Autonomous Agents and Multiagent Systems.
744–751. Full version available at arxiv.org/abs/0704.2014.

Heifetz, A., Meier, M., and Schipper, B. 2007. Unawareness, beliefs and games. In Theoretical
Aspects of Rationality and Knowledge: Proc. Eleventh Conference (TARK 2007). 183–192. Full

paper available at www.econ.ucdavis.edu/faculty/schipper/unawprob.pdf.

Kalai, E. 1990. Bounded rationality and strategic complexity in repeated games. In Game

Theory and Applications. Academic Press, San Diego, 131–157.

Kreps, D., Milgrom, P., Roberts, J., and Wilson, R. 1982. Rational cooperation in finitely
repeated prisoners’ dilemma. Journal of Economic Theory 27, 2, 245–252.

Mullainathan, S. 2002. A memory-based model of bounded rationality. Quarterly Journal of
Economics 117, 3, 735–774.

Myerson, R. 1979. Incentive-compatibility and the bargaining problem. Econometrica 47, 61–73.

Neyman, A. 1985. Bounded complexity justifies cooperation in finitely repated prisoner’s

dilemma. Economic Letters 19, 227–229.

Papadimitriou, C. H. and Yannakakis, M. 1994. On complexity as bounded rationality. In

Proc. 26th ACM Symposium on Theory of Computing. 726–733.

ACM SIGecom Exchanges, Vol. 10, No. 2, June 2011, Pages 9–15

Algorithmic Rationality · 15

Rabin, M. 1998. Psychology and economics. Journal of Economic Literature XXXVI, 11–46.

Rabin, M. and Schrag, J. 1999. First impressions matter: A model of confirmatory bias. Quaterly

Journal of Economics 114, 1, 37–82.

Rubinstein, A. 1986. Finite automata play the repeated prisoner’s dilemma. Journal of Economic

Theory 39, 83–96.

Simon, H. A. 1955. A behavioral model of rational choice. Quarterly Journal of Economics 49,

99–118.

Tversky, A. and Kahneman, D. 1981. The framing of decisions and the psychology of choice.
Science 211, 453–58.

Walker, G. and Walker, D. 2004. The Official Rock Paper Scissors Strategy Guide. Simon &

Schuster, Inc., New York.

Wilson, A. 2002. Bounded memory and biases in information processing. Manuscript.

ACM SIGecom Exchanges, Vol. 10, No. 2, June 2011, Pages 9–15

