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We present a model for routing games in which edge delay functions are uncertain and users are
risk-averse. We investigate how the uncertainty and risk-aversion transform the classical theory
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1. INTRODUCTION

Routing games were one of the central examples in the development of algorithmic
game theory. In these games, multiple users need to route between different source-
destination pairs and edges are congestible, namely, each edge delay le(x) is a non-
decreasing function of the flow or number of users x on the edge. Many of the
fundamental game theoretic questions are now well understood for these games, for
example, does equilibrium exist, is it unique, can it be computed efficiently, does
it have a compact representation; the same questions can be asked of the socially
optimal solution that minimizes the total user delay. Furthermore, routing games
were a primary motivation and application for the study of the price of anarchy,
which quantifies the inefficiency of equilibria.

So far, most research has focused on the classical models in which the edge delays
are deterministic. In contrast, real world applications contain a lot of uncertainty,
which may stem from exogenous factors such as weather, time of day, weekday
versus weekend, etc. or endogenous factors such as the network traffic. Furthermore,
many users are risk-averse in the presence of uncertainty, so that they do not
simply want to minimize expected delays and instead may need to add a buffer to
ensure a guaranteed arrival time to a destination. This fundamentally changes the
mathematical structure of the routing problems and, consequently, the behavior
and properties in routing games as well.

Our work [Nikolova and Stier-Moses 2011; 2012] aims to initiate a theoretical
study of how uncertainty and risk aversion transform the classical theory of routing
games. Integrating different models of uncertainty and different measures of risk
can easily fill a long-term research agenda. We therefore focus on the special model
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defined in the next section and hope to motivate other researchers to join in the
effort by considering generalizations or alternative models.

2. MODEL

Consider a directed graph G = (V,E) with an aggregate demand of dk units of flow
between source-destination pairs (sk, tk) for k ∈ K. We let Pk be the set of all paths
between sk and tk, and P := ∪k∈KPk be the set of all paths. We encode players

decisions as a flow vector f = (fπ)π∈P ∈ R|P|+ over all paths. Such a flow is feasible
when demands are satisfied, as given by constraints

∑
π∈Pk

fπ = dk for all k ∈ K.
The congestible network is modeled with stochastic delay functions `e(xe) + ξe(xe)
for each edge e ∈ E. Here, `e(xe) measures the expected delay when the edge
has flow xe, and the random variable ξe(xe) represents the stochastic delay error.
The function `e(·) is assumed continuous and non-decreasing, E(ξe(xe)) = 0, and
Stdev(ξe(xe)) = σe(xe), for a continuous function σe(·). Although the distribution
of delay may depend on the flow xe, we separately consider the simplified case in
which σe(xe) = σe is a constant given exogenously, independent from xe. We also
assume that delays are uncorrelated with each other (see [Nikolova 2009], p. 96 for
a discussion on how to incorporate local correlations).

Risk-averse players choose paths according to a mean-stdev objective, which we
refer to as the cost along route π:

Qπ(f) :=
∑
e∈π

`e
( ∑
p:e∈p

fp
)

+ γ

√∑
e∈π

σe
( ∑
p:e∈p

fp
)2
, (1)

where γ ≥ 0 quantifies the risk aversion of players, assumed homogeneous.
Adding a constant number of standard deviations to the expectation of delay

is a natural approach for adding a buffer to increase the reliability of a route. A
compelling interpretation of this objective in the case of normally-distributed un-
certainty is that the mean-stdev of a path equals a percentile of delay along it. This
model is also related to typical quantifications of risk, most notably the value-at-risk
objective commonly used in finance, whereby one seeks to minimize commute time
subject to arriving on time to a destination with at least, say, 95% chance. The
mean-stdev risk measure has also been used by transportation practitioners, who
base the definition of the travel time reliability index on it [Schrank et al. 2010]. At
the same time, the measure has been criticized for sometimes preferring a strictly
dominated solution.1 In essence, the objective has a preference for more certain
routes, which in fact may be an advantage in applications such as telecommuni-
cation networks (voice or video streaming), transportation (intercity bus routes),
task planning, robot motion planning, etc. Further discussion of the objective can
be found in our work [Nikolova and Stier-Moses 2011; 2012].

1For instance, between choosing a path that always takes 1 hr vs a path that takes 1 hr or 50 min

with probability 1
2

each, the objective may prefer the first path even though it is stochastically

dominated, since the second path is penalized for its variability through the standard deviation
term in the objective.

ACM SIGecom Exchanges, Vol. 11, No. 1, June 2012, Pages 21–25



Stochastic Selfish Routing · 23

Exogenous Standard Deviations Endogenous Standard Deviations

Nonatomic Equilibrium exists Equilibrium exists

Users (exponentially-large convex program) (variational inequality)

Atomic Equilibrium exists No pure strategy equilibrium

Users (potential game)

Table I. Existence of equilibria in mean-risk stochastic selfish routing games.

3. RESULTS

We generalize the traditional model of Wardrop competition [Wardrop 1952] by
incorporating stochastic travel times. Technically, this model is much harder to
analyze than the traditional one because it is non-additive, namely the cost of a
path is not equal to the sum of costs of edges along the path [Gabriel and Bern-
stein 1997]. This in turn means that an equilibrium in the stochastic setting does
not decompose to equilibria in subnetworks of the given network, leading to com-
putational and structural complications. Depending on the specific details of the
application one has in mind, users may be small or large [Harker 1988]. We consider
both infinitesimal users, referred to as the non-atomic case, as well as users that
control a strictly positive demand, referred to as the atomic case.

To analyze the problem and to establish the existence of equilibrium, we draw
from a diverse spectrum of tools from potential games and convex analysis to the
theory of variational inequalities and nonconvex (stochastic) shortest paths. We
consider four settings of nonatomic vs. atomic users and exogenous vs. endogenous
variability of travel times. Our conclusions and methods are different in each of
these settings. In the nonatomic case with standard deviation of travel times given
exogenously, we prove that equilibria always exist using a convex problem with
exponentially-many variables similar to that of [Ordóñez and Stier-Moses 2010].
The atomic case with exogenous standard deviations is shown to be a potential game
and therefore a pure-strategy Nash equilibrium always exists. To characterize the
equilibria of the nonatomic version of the problem when the standard deviations of
travel times are endogenous, we use a variational inequality formulation [Hartman
and Stampacchia 1966; Smith 1979; Dafermos 1980] that draws ideas from the
nonlinear complementary problem formulation of [Aashtiani and Magnanti 1981].
In this case, an equilibrium always exists; in fact, not only for our specific mean-
stdev objective but also for any general continuous objective. In contrast, the
atomic case with endogenous standard deviation does not always admit a pure-
strategy Nash equilibrium. We summarize these results in Table I.

Next, we investigate if there is a succinct representation (in terms of a small set
of paths) of user and system-optimal flows in the case of non-atomic users with
stochastic travel times. Our results here are independent of whether the standard
deviations are exogenous or endogenous. We prove that if one is given a solution
(either a Wardrop equilibrium or a system optimum) as an edge-flow, not every
path decomposition is a solution, in contrast to the deterministic case where every
decomposition works. Nevertheless, there is always a succinct solution that uses
at most |E| + |K| paths, where E is the set of edges in the network and K is the
set of origin-destination pairs. Although the complexity of computing a solution is
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unknown (actually, even the complexity of computing a single stochastic shortest
path is unknown), this result says that there is some hope because at least solutions
can be efficiently encoded.

Finally, we analyze the price of anarchy of mean-risk Wardrop equilibria under
stochastic travel times with respect to the socially-optimal solution, for the case of
nonatomic users. The social optimum is defined as the flow minimizing the total
cost incurred by users, as given by their mean-stdev objective. Surprisingly, under
exogenous standard deviations, uncertainty and risk aversion do not exacerbate the
inefficiency of equilibria. The price of anarchy remains equal to that of deterministic
nonatomic games. Namely, it is 4/3 for the case of linear expected travel times
[Roughgarden and Tardos 2002] and (1 − β(L))−1 for an appropriately defined
constant β(L) for expected travel time functions in a class L [Roughgarden 2003;
Correa et al. 2004; 2008].

The case of endogenous standard deviations presents a significant additional dif-
ficulty that makes the square root terms in different paths interrelated functions
of the path flow that cannot be analyzed separately; a general price of anarchy
bound for this case remains elusive. Nevertheless, we show that, despite the square
root term, the path costs are convex whenever the individual travel times and stan-
dard deviations on edges are convex. Consequently, we present sufficient conditions
for convexity of the social cost, which are similar to the sufficient conditions for
uniqueness of equilibrium in its variational inequality characterization. Unfortu-
nately, these conditions are fragile and in general the social cost will not be convex
and may admit a non-connected set of multiple global minima but we can still
identify settings where the price of anarchy is 1.

4. OPEN PROBLEMS

From a high-level philosophical perspective, it is intriguing to understand how users
make decisions and what are the right risk-aversion models in uncertain settings.
For the correct modeling of routing and other games studied in Algorithmic Game
Theory and Mechanism Design, it would be beneficial to draw from fields and areas
that have a tradition in decision-making under uncertainty such as Expected Utility
Theory and alternative Non-Expected Utility Theories (considered at the intersec-
tion of psychology and economics), Portfolio Optimization, Operations Research
and Finance.

Some concrete questions that arise from our work include:

—What is the complexity of computing an equilibrium when it exists (exogenous
standard deviations with atomic or nonatomic players; endogenous standard de-
viations with nonatomic players)?

—What is the complexity of computing the socially-optimal solution? What is the
complexity of computing the socially-optimal flow decomposition if one knows
the edge-flow that represents a socially-optimal solution?

—Can there be multiple equilibria in the nonatomic game with endogenous standard
deviations?

—What is the price of anarchy for stochastic Wardrop equilibria in the setting of
nonatomic games with endogenous standard deviations, for general graphs and
general classes of cost functions?
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—Can some of the results in this paper be extended to the case of users with
heterogenous attitudes toward risk [Ordóñez and Stier-Moses 2010]?

Of course, one could pursue other natural models and player objectives and build
upon or complement the theory we have developed here. In particular, our model
might be enriched by also considering stochastic demands to make the demand side
more realistic.
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