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Significant recent progress has been made in both the computation of optimal strategies to commit
to (Stackelberg strategies), and the computation of correlated equilibria of stochastic games. In
this letter we discuss some recent results in the intersection of these two areas. We investigate
how valuable commitment can be in stochastic games and give a brief summary of complexity
results about computing Stackelberg strategies in stochastic games.
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1. INTRODUCTION

Computing game-theoretic solutions has long been one of the main research topics
in the intersection of computer science and economics. Starting with an EC paper
in 2006, much attention has been focused on the computation of optimal strategies
in two-player Stackelberg games, in which player 1 is able to commit to a strategy
before player 2 moves. Commitment has the potential to increase the utility of
player 1, and, when commitment to mized strategies is possible, it never decreases
it [von Stengel and Zamir 2010]). The computation of Stackelberg mixed strategies
has already found application in a number of real security problems, such as airport
security [Pita et al. 2009], assigning Federal Air Marshals to flights [Tsai et al. 2009],
and Coast Guard patrols [Shieh et al. 2012].

Most research on computing Stackelberg mixed strategies so far has focused on
games where neither player learns anything about the other’s actions until the end
of the game, with the exception of player 2 learning player 1’s mixed strategy before
acting. This includes work on computing Stackelberg mixed strategies in normal-
form games [Conitzer and Sandholm 2006; von Stengel and Zamir 2010; Conitzer
and Korzhyk 2011], Bayesian games [Conitzer and Sandholm 2006; Paruchuri et al.
2008; Letchford et al. 2009; Pita et al. 2010; Jain et al. 2011], and security games
(games inspired by the applications above, whose normal form would be exponen-
tially large) [Kiekintveld et al. 2009; Korzhyk et al. 2010; Jain et al. 2010]. The
only exceptions of which we are aware concern the computation of Stackelberg
mixed strategies in extensive-form games [Letchford and Conitzer 2010] and, most
recently, in stochastic games [Letchford et al. 2012; Vorobeychik and Singh 2012].
Vorobeychik and Singh focus on Markov stationary strategies, though these are
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generally not optimal. Indeed, various unintuitive phenomena occur when apply-
ing the Stackelberg model to stochastic games, and we hope to give some insight
into this in this brief article that summarizes our results.

The results in our paper [Letchford et al. 2012] fall in three main categories:
complexity results, theoretical results on the value of being able to commit and
the value of being able to correlate, and an approximation algorithm for finding
approximate Stackelberg strategies. Below, we highlight a few results on how valu-
able commitment can be to the leader in stochastic games, and summarize our
complexity results.

2. COMMITMENT AND CORRELATION IN STOCHASTIC GAMES

A two-player stochastic game is defined as follows. There are two players, 1 and 2;
a set of states, T'; and, for each state t € T, a set of actions A? for each player i. For
each state t € T and each action pair in A} x A?, there is an outcome, consisting
of two elements: (1) the immediate payoff that each player obtains in that round,
and (2) a probability distribution for the next state that the game transitions to.
Finally, there is a discount factor  that is used to discount the value of future
payoffs.

In two-player normal-form games, it is known that correlation, by means of the
leader signaling to the follower before play, is of no value to the leader [Conitzer
and Korzhyk 2011]. This is no longer the case in stochastic games, and moreover,
the timing of the signaling matters. To illustrate this, consider the game pictured
in Figure la. This game has four states: S, F', C, and E. We assume state S is
our initial state; thus, play begins with one possible action for player 1 (the row
player, who is able to commit to a strategy ahead of time) and two possible actions
for player 2 (the column player), Ls and Rg. The state transitions in this example
are deterministic and are expressed using arrows (e.g., if player 2 chooses Rg then
play will transition to state F' in the next round). Because E is an absorbing state,
we can set 7 = 1. Suppose that player 1 is able to signal what she will play in state
C (if it is reached) before player 2 chooses his action in state F', but after he acts
in state S. Suppose that player 1 commits to drawing her play for state C from the
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distribution (.5 + €)Uc + (.5 — €) D¢, and to sending the following signal to player
2 right before play in state F': Rp when she will be playing Uc, and Lp when she
will be playing D¢o. Then, in state I, player 2 will be best off playing according
to the signal received from player 1. Moreover, in state .S, player 2 will be best
off playing Rg, resulting in an expected utility of 2 4+ 2¢ for him, and an expected
utility of 1 — 2¢ for player 1.

In contrast, if player 1 only sends the signal after the transition to state C, then
player 2 will prefer to play Rp with probability 1 in F' for an expected utility of
1.5, and hence to play Lg in the first state. On the other hand, if player 1 signals
what she will play in state C' too early, namely before player 2 makes a choice in
S, then player 2 will prefer to choose Lg when the signal is to play Lr. In both
cases, player 1 receives 0.

In the figure, the resulting profile (for the limit case ¢ = 0) is shown in blue,
and the unique correlated (and, hence, Nash) equilibrium (without commitment) is
shown in bold green itallics. This example shows that a combination of commitment
and correlation (signaling) can be much more powerful than either alone.

3. AN ALGORITHM, AND EXPERIMENTS

For computing approximate correlated equilibria of a stochastic game (without
commitment), an algorithm called QPACE [MacDermed et al. 2011] is available. It
turns out that if we allow for the type of signaling discussed in the previous section,
then QPACE can be modified to compute an optimal strategy for a Stackelberg
leader in a stochastic game. By running both algorithms on randomly generated
games, we obtain some insight into how valuable the ability to commit is in the
“typical” case.

In the Stackelberg model, at the very least, the leader can commit to play accord-
ing to the correlated equilibrium of (the non-Stackelberg version of) the stochastic
game that is best for her. That is, Stackelberg leadership at least bestows the
advantage of equilibrium selection on a player. On the other hand, as the example
in the previous section shows, the benefit of Stackelberg leadership can go beyond
this. But does it do so, to a significant extent, in the typical case?

The set of experiments represented in Figure 2a allows us to answer this question.
Of course, to assess the benefit of equilibrium selection power, it is necessary to say
something about which equilibrium would have resulted without this power. For
this, we take the correlated equilibrium that corresponds to the Kalai-Smorodinsky
bargaining solution, which favors equal gains to both parties. As the figure shows,
the difference between the Stackelberg solution and the best correlated equilibrium
is small compared to the difference to the bargaining solution, suggesting that most
of the value comes from equilibrium selection, especially as v grows.

We also examined how the number of actions affects the value of being able to
commit. Figure 2b illustrates this value as the number of actions per player varies,
over random games and with values of v of 0.0 and 0.4. We observe that as the
number of actions increases, the benefit of commitment decreases.

ACM SIGecom Exchanges, Vol. 11, No. 2, December 2012, Pages 36-40



39 . Joshua Letchford et al.

m Stackelh

= -
) i (with correlation)
2 075 rT -
B
s 0.7 4 . - Optimal correlated
g s
Z 065 o e equilibrium
Z | for leader
S 06
5 Bargaining
?} 0.55 correlated
3 55 . . equilibrium

0 0.5 1

Y

(a) The value of commitment compared
to the value of equilibrium selection, as ~
varies.

Il
> e Optimal correlated

= 10 e=@= Optimum
>
0.9 - ——
B
Stackelberg
o —r—
) ;’ (with correlation)
S 0.8 1
: 4 > Optimal correlated
= 07 A
= - Stackelberg
é 0.6 £ = (with correlation)
3
-

et
wn

2 4 6 8 10 12

Actions per player
(b) The value of commitment compared to
the value of equilibrium selection, as the
number of actions varies.

Fig. 2
h=0 0<h<oo h = oo
Corr. NP-hard (3SAT) | NP-hard (3SAT) | Modified QPACE (approximate)
No Corr. | NP-hard (3SAT) | NP-hard (3SAT) NP-hard (Knapsack)

Fig. 3: Summary of hardness results. h represents the number of rounds that player 1 can

remember.

4. COMPLEXITY RESULTS

For our complexity results for the Stackelberg model of stochastic games, we consid-
ered six different cases. First, we varied the amount of memory of previous rounds
that the leader is allowed to use in her strategy, considering zero memory (i.e.,
stationary strategies), finite memory, and infinite memory. We considered each of
these three cases both with and without correlation. Our results are summarized
in figure 3.
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