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1. INTRODUCTION

A naturally desirable property of a voting system is strategyproofness (a.k.a. nonma-
nipulability): no voter should benefit from voting strategically, i.e., voting not ac-
cording to her true preferences. However, the classical result of Gibbard [1973] and
Satterthwaite [1975] says that no reasonable voting system can be strategyproof:
if voters rank three or more alternatives and all of them can be elected, then the
only strategyproof voting systems are dictatorships.

This has contributed to the realization that it is unlikely to expect truthfulness in
voting. But is there a way of circumventing the negative results? What is the extent
of manipulability of voting systems? This problem is increasingly relevant not only
in social choice theory, but also in artificial intelligence and computer science, where
virtual elections are now an established tool for preference aggregation (see the
survey by Faliszewski and Procaccia [2010]).

Bartholdi, Tovey and Trick [1989] suggest computational complexity as a barrier
against manipulation: if it is computationally hard for a voter to manipulate, then
she would just tell the truth (see [Faliszewski and Procaccia 2010] for a detailed
history of the surrounding literature). However, this is a worst-case approach and
does not tell us anything about typical instances of the problem—is it easy or hard
to manipulate on average?

2. AVERAGE-CASE MANIPULABILITY

A natural approach was taken by Friedgut, Kalai, Keller and Nisan [2008; 2011],
who looked at the fraction of ranking profiles that are manipulable. To put it
differently: assuming each voter votes independently and uniformly at random
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(known as the impartial culture assumption), what is the probability that a ranking
profile is manipulable? Is it perhaps exponentially small (in the number of voters
n and the number of alternatives k), or is it nonnegligible?

Of course, if the social choice function (the function which maps the votes of
the voters to the winner of the election, abbreviated as SCF) is nonmanipulable (a
dictatorship or a monotone function on two alternatives) then this probability is
zero. Similarly, if the SCF is “close” to being nonmanipulable, then this probability
can be small. We say that a SCF f is e-far from the family of nonmanipulable func-
tions, if one must change the outcome of f on at least an e-fraction of the ranking
profiles in order to transform f into a nonmanipulable function. Friedgut et al.
conjectured that if £ > 3 and the SCF f is e-far from the family of nonmanipulable
functions, then the probability of a ranking profile being manipulable is bounded
from below by a polynomial in 1/n, 1/k, and . Moreover, they conjectured that a
random manipulation will succeed with nonnegligible probability, suggesting that
manipulation by computational agents in this setting is easy.

Friedgut et al. proved their conjecture in the case of k = 3 alternatives. Note that
this result does not have any computational consequences, since when there are only
k = 3 alternatives, a computational agent may easily try all possible permutations
of the alternatives to find a manipulation (if one exists).

Several follow-up papers have since extended this result. Xia and Conitzer [2008]
extended the result to a constant number of alternatives, assuming several addi-
tional technical assumptions. Dobzinski and Procaccia [2008] proved the conjecture
in the case of two voters under the assumption that the SCF is Pareto optimal.
Isaksson, Kindler and Mossel [2012] then proved the conjecture in the case of k > 4
alternatives with only the added assumption of neutrality. Moreover, they showed
that a random manipulation which replaces four adjacent alternatives in the pref-
erence order of the manipulating voter by a random permutation of them succeeds
with nonnegligible probability. Since this result is valid for any number of (k > 4)
alternatives, it does have computational consequences, implying that for neutral
SCF's, manipulation by computational agents is easy on average.

Finally, in recent work [Mossel and Rdcz 2012] we removed the neutrality con-
dition and resolved the conjecture of Friedgut et al. Removing this assumption is
important because in many settings neutrality is not a natural assumption. Con-
sider a search engine aggregating rankings of webpages; if one searches in child-safe
mode, then the top-ranked webpage cannot have adult content, and so the aggre-
gating function cannot be neutral.

The main message of these results is thus that computational hardness cannot
hide manipulations completely, because manipulation is easy on average unless the
SCF is close to being a dictatorship or taking on at most two values.

In addition, the interplay between various techniques used in the proofs is inter-
esting. Friedgut et al. used combinatorial techniques together with discrete har-
monic analysis, reducing the problem to a quantitative version of Arrow’s theorem.
The techniques of Isaksson et al. are more geometric in nature, using canonical
path arguments to show isoperimetric results about the interface of more than two
bodies. Our recent result combines tools from both of these proofs, in addition to
crucially using reverse hypercontractivity.
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3. OPEN PROBLEMS

We conclude with a few open problems that arise naturally.

—There are various ways to measure the manipulability of a function: in terms of
the probability of having manipulating voters, in terms of the expected number
of manipulating voters, etc. How are these related, and which of these is the
most relevant for applications?

—Our techniques do not lead to tight bounds and it would be interesting to find
the correct tight bounds (in terms of one of the quantities above).

—A related question is: what is the “least manipulable” function? More precisely,
in some natural subsets of functions (e.g., anonymous and such that each of
the k alternatives are chosen with probability at least 1/k?), find the one that
minimizes manipulation. Without the naturality constraint, related questions
are addressed in [Maus et al. 2007].

—Voting profiles typically have some structure. Can we prove similar results if the
underlying distribution over rankings is not i.i.d. uniform? It would be interesting
to consider the questions asked above in this setting as well.

—Studying incentives to manipulate is also important in order to understand
the difference between when manipulation is possible and when it actually oc-
curs [Carroll 2011].
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