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This paper is a survey of recent work at the intersection of mechanism design and privacy. The

connection is a natural one, but its study has been jump-started in recent years by the advent of
differential privacy, which provides a rigorous, quantitative way of reasoning about the costs that

an agent might experience because of the loss of his privacy. Here, we survey several facets of this

study, and differential privacy plays a role in more than one way. Of course, it provides us a basis
for modeling agent costs for privacy, which is essential if we are to attempt mechanism design in

a setting in which agents have preferences for privacy. It also provides a toolkit for controlling

those costs. However, perhaps more surprisingly, it provides a powerful toolkit for controlling the
stability of mechanisms in general, which yields a set of tools for designing novel mechanisms even

in economic settings completely unrelated to privacy.
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1. INTRODUCTION

Organizations such as census bureaus and hospitals have long maintained databases
of personal information. However, with the advent of the Internet, many entities
are now able to aggregate enormous quantities of personal and/or private informa-
tion about individuals, with the intent to use it for financial gain or even malicious
purposes. In reaction, several “privacy advocacy” groups have sprung up, with the
intent to move US Congress and other lawmaking bodies to enact laws restricting
the ability of private entities to collect and use personal information. Recent de-
cisions by high-profile companies such as Facebook and Google have highlighted
issues regarding privacy and brought them into public scrutiny.1,2

This interest in privacy is not solely or even largely motivated by the right to
privacy as a basic desideratum. Increasingly, private information is explicitly being
used for financial gain. In the recent past, companies have experimented with
price discriminating against customers based on past purchase history,3 technology

1Facebook has been accused of having a hard to use and frequently changing user interface for

users privacy settings.
2Several Google projects, most recently their Glass project have drawn controversy, see, e.g.
http://blogs.wsj.com/digits/2013/05/16/congress-asks-google-about-glass-privacy/ .
3See, for example, http://www.cnn.com/2005/LAW/06/24/ramasastry.website.prices/.
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choices,4 or social profile.5 More broadly, there are concerns that the availability
of such private information may influence important parts of an individual’s life,
e.g. access to health insurance or employment opportunities. As a result, issues
related to privacy can have a large impact on individual welfare. An understanding
of how agents’ private data can be used in economic settings is therefore important
to guiding policy.

Motivated by these issues, this article is part survey, part position paper and
part progress report. To formally study privacy, we have two “toolboxes.” The
older literature is the large literature on information economics, game theory and
mechanism design. The modern literature on “differential privacy,” on the other
hand, gives a set of tools to reason about and control individual’s costs for privacy
loss. Combined, we can use these tools both to model settings in which agents have
preferences toward privacy, and study mechanisms that trade off individual privacy
with social goals. More surprisingly, the latter toolbox allows for the design of novel
mechanisms in settings otherwise unrelated to privacy.

To briefly foreshadow the organization of this paper: in the next section, we
quickly review the most basic aspects of differential privacy that we will use in this
survey. We then study various recent contributions to mechanism design of two
sorts. The first kind uses differential privacy as a tool to design novel mechanisms
in settings where privacy is not a concern. The second considers the design of
mechanisms in settings where agents have privacy concerns, i.e. the level of privacy
the mechanism offers enters into agent’s utility. Finally, we survey the (limited)
literature that provides micro-foundations of preferences for privacy.

2. PRELIMINARIES

This survey is chiefly (but not exclusively) interested in differential privacy [Dwork
et al. 2006]. Let T denote some type space, and let O denote some outcome space.
We will write t ∈ T n to denote a vector of n types, using the usual convention
of indexing the i’th type by ti, and the vector of all types excluding the i’th type
by t−i. We will say that two type vectors t, t′ ∈ T n are neighbors if there exists
some index i such that t−i = t′−i: in other words, t and t′ only differ in their i’th
index. We are now prepared to define differential privacy, which will be a property
of randomized mappings M : T n → O. We refer to these as mechanisms.

Definition 2.1. A mechanism M : T n → O is ε-differentially private if for all
pairs of neighboring type vectors t, t′ ∈ T n, and for all functions u : O → R+:6

Eo∼M(t)[u(o)] ≤ exp(ε)Eo∼M(t′)[u(o)].

Note that the ‘neighbor’ relation is symmetric, so by definition, we also have the
reverse inequality

Eo∼M(t)[u(o)] ≥ exp(−ε)Eo∼M(t′)[u(o)]

4See, for example, http://www.cnn.com/2012/06/26/tech/web/orbitz-mac-users.
5For example, American Airlines offers customers a free day-pass to their premium lounges if they
show they are influential on online social media via a “Klout score.”. See https://secure.fly.

aa.com/klout/.
6We think of ε as being a small constant less than one, and so exp(ε) ≈ 1 + ε.
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In other words, differential privacy promises that simultaneously, for every possi-
ble utility function u : O → R+, the unilateral change of a single reported type ti to
a mechanism can have only a small (≈ 1 + ε) multiplicative effect on the expected
utility of the outcome drawn from the mechanism M . We note that this definition
is syntactically different from the standard definition of differential privacy [Dwork
et al. 2006], but is easily seen to be equivalent.

We will work with this version of the definition, which is particularly natural
in the context of mechanism design. This version of the definition also makes it
apparent why differential privacy corresponds to something that one would think of
as “privacy.” It promises that regardless of your preferences, your expected utility is
not substantially changed if you decide to participate in the mechanism, compared
to not participating (or, say, providing random data). Thus, given the choice to
participate in a differentially private computation, you should be willing if given
some (small) incentive to do so.7

There is a large literature on differential privacy which we will not attempt to
survey— we direct the reader to [Dwork and Roth 2013] for an introduction to the
area. Here, we mention just one differentially private mechanism: the exponential
mechanism of [McSherry and Talwar 2007].

Definition 2.2. The exponential mechanism is defined by a range R, a privacy
parameter ε, and a “quality function” q : T n×R → R which has the property that
for all pairs of neighboring type vectors t, t′ ∈ T n, and for all r ∈ R : |q(t, r) −
q(t′, r)| ≤ ∆. We refer to this constant ∆ as the sensitivity of q. Given an input
t ∈ T n, the exponential mechanism outputs r ∈ R according to the distribution

r ∝ exp

(
εq(t, r)

2∆

)
.

The exponential mechanism is extremely useful due to the following theorem:

Theorem 2.3 [McSherry and Talwar 2007]. The exponential mechanism is
ε-differentially private and with probability 1− β outputs some r ∈ R such that

q(t, r) ≥ max
r∗∈R

q(t, r∗)− 2∆

ε

(
ln
|R|
β

)
.

In other words, the exponential mechanism is a differentially private mechanism
that outputs an element from the range that has quality score that is nearly as
high as possible—excepting an additive term which is linear in the sensitivity of the
quality score, and only logarithmic in the cardinality of the range of the mechanism.

2.1 Differential Privacy as a Solution Concept

Let us start by recalling a basic notion from mechanism design: dominant strategy
truthfulness, also known as strategyproofness. Suppose that agents i ∈ {1, . . . , n}
with types ti ∈ T n have utility functions ui : O → [0, 1] over outcomes in O chosen
by a mechanism M .

7This incentive could take the form of a monetary payment, or could simply be the joy of furthering
science, or the love of filling out forms.
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Definition 2.4. M : T n → O is ε-approximately dominant strategy truthful if
for every player i, for every t−i ∈ T n−1, and for every t′ ∈ T :

Eo∼M(ti,t−i)[ui(o)] ≥ Eo∼M(t′i,t−i)[ui(o)]− ε

[McSherry and Talwar 2007] were the first to observe that differential privacy is
a stronger guarantee than approximate truthfulness. Note that for ε ≤ 1, exp(ε) ≤
1 + 2ε and so the following proposition is immediate.

Proposition 2.5. If a mechanism M is ε-differentially private, then M is also
2ε-approximately dominant strategy truthful.

As a solution concept, this has several robustness properties that strategy proof
mechanisms do not. For example, the following is almost immediate from the def-
inition of differential privacy: If M1 and M2 are both ε-differentially private, and
f is any function (including the identity function), then M3, defined as M3(t) =
f(M1(t),M2(t)) is 2ε-differentially private. This means in particular that the com-
position of two ε-differentially private mechanisms remains 4ε-approximately dom-
inant strategy truthful. In contrast, the incentive properties of general strategy
proof mechanisms may not be preserved under composition.

Another useful property of differential privacy follows immediately from its defi-
nition: suppose that t and t′ ∈ T n are not neighbors, but instead differ in k indices.
Then we have: Eo∼M(t)[u(o)] ≤ exp(kε)Eo∼M(t′)[u(o)]. That is, changes in up to k
types changes the expected output by at most ≈ (1+kε), when k � 1/ε. Therefore,
differentially private mechanisms make truthful reporting a 2kε-approximate domi-
nant strategy even for coalitions of k agents – i.e. differential privacy automatically
provides robustness to collusion. Again, this is in contrast to general dominant-
strategy truthful mechanisms, which in general offer no guarantees against collusion.

Notably, differential privacy allows for these properties in very general settings
without the use of money! In contrast, the set of exactly dominant strategy mech-
anisms when monetary transfers are not allowed is extremely limited.

We conclude with a drawback of using differential privacy as a solution concept as
stated, first raised in [Nissim et al. 012b]: not only is truthfully reporting one’s type
an approximate dominant strategy, any report is an approximate dominant strategy!
That is, differential privacy makes the outcome approximately independent of any
single agent’s report. In some settings, this shortcoming can be alleviated. For
example, suppose that M is a differentially private mechanism, but that agent
utility functions are defined to be functions both of the outcome of the mechanism,
and of the reported type of the agent: ui : O × T → [0, 1]. Suppose furthermore
that for every outcome o, truthful reporting is a best response. In other words,
for all o: ui(o, t) ≥ maxt′i∈T ui(o, t

′). In this case, it is not hard to verify that the
mechanism remains approximately dominant strategy truthful, but it is no longer
the case that all reports are approximate dominant strategies.

3. (DIFFERENTIAL) PRIVACY AS A TOOL IN MECHANISM DESIGN

In this section, we show how the machinery of differential privacy can be used as a
tool in designing novel mechanisms.
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3.1 Warmup: Digital Goods Auctions

To warm up, let us consider a simple special case of the first application of dif-
ferential privacy in mechanism design, the seminal [McSherry and Talwar 2007].
Consider a digital goods auction, i.e. one where the seller has an unlimited supply
of a good with zero marginal cost to produce, for example a piece of software or
other digital media. There are n unit demand buyers for this good, each with un-
known valuation vi ∈ [0, 1]. There is no prior on the bidder valuations, so a natural
revenue benchmark is the revenue of the best fixed price. At a price p ∈ [0, 1], each
bidder i with vi ≥ p will buy. Therefore the total revenue of the auctioneer is

Rev(p, v) = p · |{i : vi ≥ p}|.

The optimal revenue is the revenue of the best fixed price: OPT = maxp Rev(p, v).
This setting is well studied— [Balcan et al. 2005] give a dominant strategy truthful
mechanism which achieves revenue at least OPT−O(

√
n).

We show how a simple application of the exponential mechanism achieves revenue

at least OPT − O
(

logn
ε

)
. That is, the mechanism trades exact for approximate

truthfulness, but achieves an exponentially better revenue guarantee. Of course,
it also inherits the benefits of differential privacy discussed previously, such as
resilience to collusion, and composability.

The idea is to select a price from the exponential mechanism, using as our “quality
score” the revenue that this price would obtain. As we have defined it, the expo-
nential mechanism is parameterized by some discrete range.8 Suppose we choose
the range of the exponential mechanism to be R = {α, 2α, . . . , 1}? The size of the
range is |R| = 1/α. What have we lost in potential revenue if we restrict ourselves
to selecting a price from R? It is not hard to see that

OPTR ≡ max
p∈R

Rev(p, v) ≥ OPT− αn.

This is because if p∗ is the price that achieves the optimal revenue, and we use a
price p such that p∗ − α ≤ p ≤ p∗, every buyer who bought at the optimal price
continues to buy, and provides us with at most α less revenue per buyer. Since
there are at most n buyers, the total lost revenue is at most αn.

So how do we parameterize the exponential mechanism? We have a family of
discrete ranges R, parameterized by α. For a vector of values v and a price p ∈ R,
we define our quality function to be q(v, p) = Rev(v, p). Observe that because
each value vi ∈ [0, 1], the sensitivity of q is ∆ = 1: changing one bidder valuation
can only change the revenue at a fixed price by at most vi ≤ 1. Therefore, if we
require ε-differential privacy, from Theorem 2.3, we get that with high probability,
the exponential mechanism returns some price p such that

Rev(p, v) ≥ (OPT− αn)−O
(

1

ε
ln

(
1

α

))
.

Choosing our discretization parameter α to minimize the two sources of error, we

8This is not necessary, but simplifies the exposition.
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find that this mechanism with high probability finds us a price that achieves revenue

Rev(p, v) ≥ OPT−O
(

log n

ε

)
.

Note that if we take (e.g.) ε = 1/ log(n), then we obtain a mechanism that is
asymptotically exactly truthful (i.e. as the market grows large, the approximation
to truthfulness becomes exact), while still achieving revenue at least (1−o(1))OPT,
so long as OPT grows more quickly than log(n)2 with the size of the population n.

Finally, notice that we could make the reported value vi of each agent i bind-
ing. In other words, we could allocate an item to agent i and extract payment
of the selected posted price p whenever vi ≥ p. If we do this, the mechanism is
approximately truthful, because the price is picked using a differentially private
mechanism. Additionally, it is not the case that every report is an approximate
dominant strategy: if an agent over-reports, she may be forced to buy the good at
a price higher than her true value.

3.2 Approximately Truthful Equilibrium Selection Mechanisms

We now consider the problem of approximately truthful equilibrium selection, stud-
ied in [Kearns et al. 2012]. Roughly speaking, the problem is as follows: suppose
we are given a game in which each player knows their own payoffs, but not others’
payoffs. The players therefore do not know the equilibrium structure of this game.
Even if they did, there might be multiple equilibria, with different agents preferring
different equilibria. Can a mechanism offered by an intermediary incentivize agents
to truthfully report their utilities and follow the equilibrium it selects?

For example, imagine a city in which (say) Google Navigation is the dominant
service. Every morning, each person enters their starting point and destination,
receives a set of directions, and chooses his/ her route according to those directions.
Is it possible to design a navigation service such that: (1) Each agent is incentivized
to report truthfully, and (2) then follow the driving directions provided? Both
misreporting start and end points, and truthfully reporting start and end points,
but then following a different (shorter) path are to be disincentivized.

Intuitively, our two desiderata are in conflict. In the commuting example above,
if we are to guarantee that every player is incentivized to truthfully follow their
suggested route, then we must compute an equilibrium of the game in question
given players’ reports. On the other hand, to do so, our suggested route to some
player i must depend on the reported location/ destination pairs of other players.
This tension will pose a problem in terms of incentives: if we compute an equilibrium
of the game given the reports of the players, an agent can potentially benefit by
misreport, causing us to compute an equilibrium of the wrong game.

This problem would be largely alleviated, however, if the report of agent i only
has a tiny affect on the actions of agents j 6= i. In this case, agent i could hardly gain
an advantage through his effect on other players. Then, assuming that everyone
truthfully reported their type, the mechanism would compute an equilibrium of the
correct game, and by definition, each agent i could do no better than follow the
suggested equilibrium action. In other words, if we could compute an approximate
equilibrium of the game under the constraint of differential privacy, then truthful
reporting, followed by taking the suggested action of the coordination device would
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be a Nash equilibrium. A moment’s reflection reveals that the goal of privately
computing an equilibrium is not possible in small games, in which an agent’s utility
is a highly sensitive function of the actions (and hence utility functions) of the other
agents.9 But what about in large games?

Formally, suppose we have an n player game with action set A, and each agent
with type ti has a utility function ui : An → [0, 1]. We say that this game is ∆-large
if for all players i 6= j, vectors of actions a ∈ An, and pairs of actions aj , a

′
j ∈ A:∣∣ui(aj , a−j)− ui(a′j , a−j)∣∣ ≤ ∆.

In other words, if some agent j unilaterally changes his action, then his affect on
the payoff of any other agent i 6= j is at most ∆. Note that if agent j changes
his own action, then his payoff can change arbitrarily. Many games are “large” in
this sense. In the commuting example above, if Alice changes her route to work
she may substantially increase or decrease her commute time, but will only have a
minimal impact on the commute time of any other agent Bob. The results in this
section are strongest for ∆ = O(1/n), but hold more generally.

First we might ask whether we need privacy at all— could it be the case that in
a large game, any algorithm which computes an equilibrium of a game defined by
reported types has the stability property that we want? The answer is no. As a
simple example, consider n people who must each choose whether to go to the beach
(B) or the mountains (M). People privately know their types— each person’s utility
depends on his own type, his action, and the fraction of other people p who go to
the beach. A Beach type gets a payoff of 10p if he visits the beach, and 5(1−p) if he
visits the mountain. A mountain type gets a payoff 5p from visiting the beach, and
10(1−p) from visiting the mountain. Note that this is a large game— each player’s
payoffs are insensitive in the actions of others. Further, note that “everyone visits
beach” and “everyone visits mountain” are both equilibria of the game, regardless
of the realization of types. Consider the mechanism that attempts to implement
the following social choice rule— “if the number of beach types is less than half
the population, send everyone to the beach, and vice versa.” It should be clear
that if mountain types are just in the majority, then each mountain type has an
incentive to misreport as a beach type; and vice versa. As a result, even though
the game is “large” and agents’ actions do not affect others’ payoffs significantly,
simply computing equilibria from reported type profiles does not in general lead to
even approximately truthful mechanisms.

Nevertheless, [Kearns et al. 2012] are able to give a mechanism with the following
property: it elicits the type ti of each agent, and then computes an α-approximate
correlated equilibrium of the game defined by the reported types.10 It draws an
action profile a ∈ An from the correlated equilibrium, and reports action ai to each
agent i. The algorithm has the guarantee that simultaneously for all players i, the

9Positive results are not beyond hope in small games for slightly different settings. See, e.g.

[Dziuda and Gradwohl 2012].
10A correlated equilibrium is defined by a joint distribution on profiles of actions, An. For an

action profile a drawn from the distribution, if agent i is told only ai, then playing action ai is a

best response given the induced conditional distribution over a−i. An α-approximate correlated
equilibrium is one where deviating improves an agent utility by at most α.
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joint distribution a−i on reports to all players other than i is differentially private
in the reported type of agent i. This guarantee is sufficient for approximate truth-
fulness, because it means that agent i cannot substantially change the distribution
on actions induced on the other players by misreporting his own type.

More specifically, when the mechanism of [Kearns et al. 2012] computes an
α-approximate correlated equilibrium while satisfying ε-differential privacy, every
agent following the honest behavior (i.e. first reporting their true type, then fol-
lowing their suggested action) forms an (2ε + α)-approximate Nash equilibrium.
This is because, by privacy, reporting your true type is a 2ε-approximate domi-
nant strategy, and given that everybody reports their true type, the mechanism
computes an α-approximate correlated equilibrium of the true game, and hence
by definition, following the suggested action is an α-approximate best response.
[Kearns et al. 2012] give mechanisms for computing α-approximate equilibrium in

large games with α = O
(

1√
nε

)
. Therefore, by setting ε = O

(
1

n1/4

)
, this gives an

η-approximately truthful equilibrium selection mechanism for

η = 2ε+ α = O

(
1

n1/4

)
.

In other words, it gives a mechanism for coordinating equilibrium behavior in large
games that is asymptotically truthful in the size of the game, all without the need
for monetary transfers.

3.3 Obtaining Exact Truthfulness

So far we have discussed mechanisms that are asymptotically truthful in large pop-
ulation games. However, what if we want to insist on mechanisms that are exactly
dominant strategy truthful, while maintaining some of the nice properties enjoyed
by our mechanisms so far: for example, that the mechanisms do not need to be able
to extract monetary payments? Can differential privacy help here? It can—in this
section, we discuss a special case of a framework laid out by [Nissim et al. 012b]
which uses differentially private mechanisms as a building block towards designing
exactly truthful mechanisms without money.

The basic idea is simple and elegant. As we have seen, the exponential mechanism
can often give excellent utility guarantees while preserving differential privacy. This
doesn’t yield an exactly truthful mechanism, but it gives every agent very little
incentive to deviate from truthful behavior. What if we could pair this with a
second mechanism which need not have good utility guarantees, but gives each agent
a strict positive incentive to report truthfully, i.e. a mechanism that essentially only
punishes non-truthful behavior? Then, we could randomize between running the
two mechanisms. If we put enough weight on the punishing mechanism, then we
inherit its strict-truthfulness properties. The remaining weight that is put on the
exponential mechanism contributes to the utility properties of the final mechanism.
The hope is that since the exponential mechanism is approximately strategy proof
to begin with, the randomized mechanism can put small weight on the strictly
truthful punishing mechanism, and therefore will have good utility properties.

To design punishing mechanisms, [Nissim et al. 012b] work in a slightly non-
standard environment. Rather than simply picking an outcome, they model a
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mechanism as picking an outcome, and then an agent as choosing a reaction to
that outcome, which together define his utility. They then give the mechanism
the power to restrict the reactions allowed by the agent based on his reported type.
Formally, they work in the following framework:

Definition 3.1 The Environment [Nissim et al. 012b]. An environment is a set
N of n players, a set of types ti ∈ T , a finite set O of outcomes, a set of reactions
R and a utility function ui : T ×O ×R→ [0, 1] for each agent i.

We write ri(t, s, R̂i) ∈ arg maxr∈R̂i
ui(t, s, r) to denote i’s optimal reaction among

choices R̂i ⊆ R to alternative s if he is of type t.
A direct revelation mechanism M defines a game which is played as follows:

(1) Each player i reports a type t′i ∈ T .

(2) The mechanism chooses an alternative s ∈ O and a subset of reactions for each
player R̂i ⊆ R.

(3) Each player chooses a reaction ri ∈ R̂i and experiences utility ui(ti, s, ri).

Agents play so as to maximize their own utility. Note that since there is no further
interaction after the 3rd step, rational agents will pick ri = ri(ti, s, R̂i), and so we
can ignore this as a strategic step. Let R = 2R. Then a mechanism is a randomized
mapping M : T → O ×Rn.

Let us consider the utilitarian welfare criterion: F (t, s, r) = 1
n

∑n
i=1 ui(ti, s, ri),

Note that this has sensitivity ∆ = 1/n, since each agent’s utility lies in the range
[0, 1]. Hence, if we simply choose an outcome s and allow each agent to play their
best response reaction, the exponential mechanism is an ε-differentially private

mechanism, which by Theorem 2.3, achieves social welfare at least OPT−O
(

log |O|
εn

)
with high probability. Let us denote this instantiation of the exponential mecha-
nism, with quality score F , range O and privacy parameter ε, as Mε.

The idea is to randomize between the exponential mechanism (with good social
welfare properties) and a strictly truthful mechanism which punishes false reporting
(but with poor social welfare properties). If we mix appropriately, then we will get
an exactly truthful mechanism with reasonable social welfare guarantees.

Here is one such punishing mechanism which is simple, but not necessarily the
best for a given problem:

Definition 3.2 [Nissim et al. 012b]. The commitment mechanism MP (t′) selects
s ∈ O uniformly at random and sets R̂i = {ri(t′i, s, Ri)}, i.e. it picks a random
outcome and forces everyone to react as if their reported type was their true type.

Define the gap of an environment as

γ = min
i,ti 6=t′i,t−i

max
s∈O

(ui(ti, s, ri(ti, s, Ri))− ui(ti, s, ri(t′i, s, Ri))) ,

i.e. γ is a lower bound over players and types of the worst-case cost (over s) of
mis-reporting. Note that for each player, this worst-case is realized with probability
at least 1/|O|. Therefore we have the following simple observation:

Lemma 3.3. For all i, ti, t
′
i, t−i:

ui(ti,MP (ti, t−i)) ≥ ui(ti,MP (t′i, t−i)) +
γ

|O|
ACM SIGecom Exchanges, Vol. 12, No. 1, June 2013, Pages 8–29
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Note that the commitment mechanism is strictly truthful: every individual has at
least a γ

|O| incentive not to lie.

This suggests an exactly truthful mechanism with good social welfare guarantees:

Definition 3.4. The punishing exponential mechanism MP
ε (t) defined with pa-

rameter 0 ≤ q ≤ 1 is, selects the exponential mechanism Mε(t) with probability
1− q and the punishing mechanism MP (t) with complementary probability q.

The following two theorems from [Nissim et al. 012b] show incentive and social
welfare properties of this mechanism.

Theorem 3.5. If 2ε ≤ qγ
|O| then MP

ε is strictly truthful.

Theorem 3.6. For sufficiently large n, MP
ε achieves social welfare at least

OPT−O

(√
|O| log |O|

γn

)
Note that this mechanism is truthful without the need for payments!
Let us now consider an application of this framework: the facility location game.

Suppose that a city wants to build k hospitals to minimize the average distance
between each citizen and their closest hospital. To simplify matters, we make
the mild assumption that the city is built on a discretization of the unit line.11

Formally, for all i let L(m) = {0, 1
m ,

2
m , . . . , 1} denote the discrete unit line with

step-size 1/m. |L(m)| = m+ 1. Let T = Ri = L(m) for all i and let |O| = L(m)k.
Define the utility of agent i to be:

ui(ti, s, ri) =

{
−|ti − ri|, If ri ∈ s;
−1, otherwise.

In other words, agents are associated with points on the line, and an outcome is an
assignment of a location on the line to each of the k facilities. Agents can react to a
set of facilities by deciding which one to go to, and their cost for such a decision is
the distance between their own location (i.e. their type) and the facility that they
have chosen. Note that ri(ti, s) is here the closest facility ri ∈ s.

We can instantiate Theorem 3.6. In this case, we have: |O| = (m + 1)k and
γ = 1/m, because any two positions ti 6= t′i differ by at least 1/m. Hence, we have:

Theorem 3.7 [Nissim et al. 012b]. MP
ε instantiated for the facility location

game is strictly truthful and achieves social welfare at least:

OPT−O

(√
km(m+ 1)k logm

n

)
This is already very good for small numbers of facilities k, since we expect that
OPT = Ω(1). We note that for the facility location problem, [Nissim et al. 012b]
derive a superior bound using a more refined argument.

11If this is not the case, we can easily raze and then re-build the city.
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4. THE VALUE OF PRIVACY

In the previous section, we saw that differential privacy can be useful as a tool
to design mechanisms, for agents who care only about the outcome chosen by the
mechanism. We here primarily viewed privacy as a tool to accomplish goals in
traditional mechanism design. As a side affect, these mechanisms also preserved
the privacy of the reported player types. Is this itself a worthy goal? Why might
we want our mechanisms to preserve the privacy of agent types?

A bit of reflection reveals that agents might care about privacy. Indeed, ba-
sic introspection suggests that in the real world, agents value the ability to keep
certain “sensitive” information private, for example, health information or sexual
preferences. In this section, we consider the question of how to model this value
for privacy, and various approaches taken in the literature.

A first option is to just model value for privacy as a part of the agent’s preferences.
At one level, this is a satisfactory approach. Agents do seem to value privacy, and
this is in the spirit of economic modeling “De Gustibus non disputandum est.”
However, such a “reduced form” approach may not be helpful in policy analysis.

Recall our original motivation for differential privacy— it quantifies the worst
case harm that can befall an agent from revealing his private data. A structural
model of how the agent evaluates this harm may, therefore, be helpful in under-
standing both the individual value of privacy and the social value of privacy policies.
For example, consider how an agent values the privacy of his health information.
Consider two scenarios, one where health insurers or potential employers can dis-
criminate based on an agent’s health history and another where they cannot do
so.12 Ceteris paribus, it seems reasonable that the dis-utility he suffers from his
health information being made public is different in these two scenarios. A more
structural model of preferences for privacy may therefore be more appropriate for
understanding, e.g., the social value of privacy policies.

There have been a few notable papers that study privacy policy in dynamic
models.13 Agents’ preferences for privacy in a period derive from how other players
can use the information revealed against the agent in future periods.

Most of the papers we survey are motivated by repeat purchasers in electronic
commerce settings. Information about purchases made by an agent in a setting
with limited privacy can be used to learn about his ‘payoff type,’ and therefore
better price discriminate subsequently. An agent understands this and may distort
his early purchases, depending on the privacy policy. Similarly, pricing by a profit
maximizing seller also depends on the privacy policy. The trade-offs between various
privacy policies can be studied by computing the equilibrium welfare and revenue
under these policies.

An early paper in this area is [Taylor 2004]. He studies a setting where consumers
purchase from firm 1 in period 1 and then firm 2 in period 2. Consumers have

12As an aside, we should point out that simply banning discrimination on a certain attribute may

not be sufficient to prevent discrimination using other information correlated with that attribute.
See for example [Chan and Eyster 2003], and a related definition of fairness [Dwork et al. 2012]
13The broader field of information economics studies the value of information a variety of settings

too vast to survey here. We restrict attention to papers the explicitly study the value of privacy
policies.
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additive preferences for the two goods and may have either a high or low value for
each good. These values are privately known to them, and for any given customer
the two are unconditionally correlated. The paper studies three scenarios. In the
first, firm 1 must keep purchases by the consumers private. In the second, firm 1 can
sell this information to firm 2, but consumers are unsophisticated. In other words
consumers’ purchase decisions in period 1 are myopic, not taking into account how
this will influence the prices they are offered in period 2. The author shows that
firms fare well in the latter relative to the former. Finally, the author considers the
equilibrium of a model where consumers are strategic rather than unsophisticated.
In this setting, consumers may strategically reduce demand in the first period.
This undermines the market for consumer information, and the firms may prefer
to commit to a policy of no market for consumer information.

Another early seminal paper is that of [Calzolari and Pavan 2006]. They study
a more general setting where an agent with private information sequentially con-
tracts with two principals. The upstream principal may sell information to the
downstream principal after contracting with the agent. This ‘privacy policy’ is
a part of the contract offered by the upstream principal, and he can commit to
this. The agent is sophisticated and takes this into account. They provide a gen-
eral characterization of settings in which the upstream principal offers full privacy.
This hinges on three conditions being satisfied. Firstly, they require that the agent’s
trade with the downstream principal is not directly payoff relevant to the upstream
principal. Secondly, they require that the agent’s valuations across the two prin-
cipals be positively correlated. Finally, they require that the preferences in the
downstream relationship are separable so that the do not depend on the upstream
level of trade. If any of these conditions are violated, full privacy need not remain
optimal. Surprisingly, the paper shows that the agent may strictly prefer disclo-
sure. In other words, the equilibrium value of privacy may be negative, which runs
counter to our intuitions about the value of privacy.

[Conitzer et al. 2012] study a setting where a monopolist seller in a two-period
model cannot commit to future prices.14 Each agent has unit demand in each pe-
riod, and a private value. In the second period, therefore, the monopolist conditions
the price he offers on whether or not the agent bought in the first period. Intu-
itively, an agent who bought in the first period will face a higher price. The agent
realizes this and therefore may not buy in the first period even if it is myopically
optimal. In the model, agents may be able to ‘buy’ privacy, i.e. avoid being iden-
tified as past customers, but possibly at a cost. On a similar vein to the previous
two papers, they note that in this setting, if this privacy is available for free, all
consumers will choose to purchase it, but in equilibrium this will be worse for the
agent and better for the monopolist. Increasing the cost of anonymity can actually
benefit consumers.

Finally, in a recent paper, [Bergemann et al. 2013] study price discrimination by a
monopolist who has some exogenously specified information additional to the prior
distribution of the buyers’ type. The change in consumer and producer surplus
from this additional information can thus be thought of as the value of privacy of
this information.

14See also [Acquisti and Varian 2005] for a related study.
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This suggests that there is much to be done in terms of modeling and under-
standing preferences for privacy. Our basic intuition, i.e., that private information
can be used to price discriminate against an agent, and therefore privacy is “good”
for an agent, is not reflected in models where information is revealed by strategic
purchases. Indeed, these papers unambiguously suggest that with strategic agents,
the value of privacy is negative!

5. MECHANISM DESIGN FOR PRIVACY AWARE AGENTS

Having established that agents might have preferences for privacy, it is worth con-
sidering the design of mechanisms that preserve privacy as an additional goal, even
for tasks such as, e.g. welfare maximization that we can already solve non-privately.
As we will see, it is indeed possible to generalize the VCG mechanism to privately
approximately optimize social welfare in any social choice problem, with a smooth
trade-off between the privacy parameter and the approximation parameter, all while
guaranteeing exact dominant strategy truthfulness.

However, we might wish to go further. In the presence of agents with preferences
for privacy, if we wish to design truthful mechanisms, we must somehow model their
preferences for privacy in their utility function, and then design mechanisms which
are truthful with respect to these new “privacy aware” utility functions. As we have
seen with differential privacy, it is most natural to model privacy as a property of
the mechanism itself. Thus, our utility functions are not merely functions of the
outcome, but functions of the outcome and of the mechanism itself. In almost all
models, agent utilities for outcomes are treated as linearly separable, that is, we
will have for each agent i,

ui(o,M, t) ≡ µi(o)− ci(o,M, t).

Here µi(o) represents agent i’s utility for outcome o and ci(o,M, t) the (privacy)
cost that agent i experiences when outcome o is chosen with mechanism M.

We will first consider perhaps the simplest (and most näıve) model for the privacy
cost function ci, following [Ghosh and Roth 2011]. Recall that for ε� 1, differential
privacy promises that for each agent i, and for every possible utility function fi,
type vector t ∈ T n, and deviation t′ ∈ T :

|Eo∼M(ti,t−i)[fi(o)]− Eo∼M(t′i,t−i)[fi(o)]| ≤≈ εEo∼M(t)[fi(o)].

If we view fi as representing the “expected future utility” for agent i, it is therefore
natural to model agent i’s cost for having his data used in an ε-differentially private
computation as being linear in ε. That is, we think of agent i as being parameterized
by some value vi ∈ R, and take:

ci(o,M, t) = εvi

where ε is the smallest value such thatM is ε-differentially private. Here we imagine
vi to represent a quantity like Eo∼M(t)[fi(o)]. In this setting, ci does not depend
on the outcome o or the type profile t.

Using this näıve privacy measure, we discuss a basic problem in private data
analysis: how to collect the data, when the owners of the data value their privacy
and insist on being compensated for it. In this setting, there is no “outcome” that
agents value, other than payments, there is only dis-utility for privacy loss. We will
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then discuss shortcomings of this (and other) measures of the dis-utility for privacy
loss, as well as privacy in more general mechanism design settings when agents do
have utility for the outcome of the mechanism.

Our discussion here is in the context of a specific setting, i.e., the sensitive sur-
veyor’s problem. Gradwohl [2012] considers the abstract problem of what social
choice functions can be implemented when agents have preferences for privacy. He
shows that extensive game forms are useful when agents have privacy concerns.
We do not discuss this paper here, and refer interested readers to the original
manuscript for details.

5.1 A Private Generalization of the VCG Mechanism.

Suppose we have a general social choice problem, defined by an outcome space
O, and a set of agents N with arbitrary preferences over the outcomes given by
ui : O → [0, 1]. We might want to choose an outcome o ∈ O to maximize the
social welfare F (o) = 1

n

∑n
i=1 ui(o). It is well known that in any such setting,

the VCG mechanism can implement the outcome o∗ which exactly maximizes the
social welfare, while charging payments that make truth-telling a dominant strategy.
What if we want to achieve the same result, while also preserving privacy? How
must the privacy parameter ε trade off with our approximation to the optimal social
welfare?

Recall that we could use the exponential mechanism to choose an outcome o ∈ O,
with quality score F . For privacy parameter ε, this would give a distribution

Mε defined to be Pr[Mε = o] ∝ exp
(
εF (o)

2n

)
. Moreover, this mechanism has

good social welfare properties: with probability 1− β, it selects some o such that:

F (o) ≥ F (o∗) − 2
εn

(
ln |O|β

)
. But as we saw, differential privacy only gives ε-

approximate truthfulness.
However, [Huang and Kannan 2012] show thatMε is the solution to the following

exact optimization problem:

Mε = arg max
D∈∆O

Eo∼D[F (o)] +
2

εn
H(D)

where H represents the Shannon Entropy of the distribution D. In other words, the
exponential mechanism is the distribution which exactly maximizes the expected
social welfare, plus the entropy of the distribution weighted by 2/(εn). This result
implies that the exponential mechanism is maximal in distributional range, and
hence can be paired with payments to make it exactly truthful.15 Moreover, they
show how to charge payments in such a way as to preserve privacy. The upshot
is that for any social choice problem, the social welfare can be approximated in a
manner that both preserves differential privacy, and is exactly truthful.

[Chen et al. 2013] also give an (almost equivalent) private generalization of the
VCG mechanism and show conditions under which it is truthful even taking into
account agent preferences for privacy. We discuss this in Section 5.3.

15One way to see this is to view the exponential mechanism as exactly maximizing the social

welfare in an augmented setting in with an additional player who cares only about entropy. The
payments which make this mechanism truthful are the VCG payments for the augmented game.
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5.2 The Sensitive Surveyor’s Problem

In this section, we consider the problem of a data analyst who wishes to conduct
a study using the private data of a collection of individuals. However, he must
convince these individuals to hand over their data! Individuals experience costs for
privacy loss. The data analyst can mitigate these costs by guaranteeing differential
privacy and compensating them for their loss, while trying to get a representative
sample of data. We here closely follow a survey of [Roth 2012].

Consider the following stylized problem of the sensitive surveyor Alice. She is
tasked with conducting a survey of a set of n individuals N , to determine what
proportion of the individuals i ∈ N satisfy some property P (i). Her ultimate goal
is to discover the true value of this statistic, s = 1

n |{i ∈ N : P (i)}|, but if that is
not possible, she will be satisfied with some estimate ŝ such that the error, |ŝ− s|,
is minimized. We will adopt a notion of accuracy based on large deviation bounds,
and say that a surveying mechanism is α-accurate if Pr[|ŝ − s| ≥ α] ≤ 1

3 . The
inevitable catch is that individuals value their privacy and will not participate in
the survey for free. Individuals experience some cost as a function of their loss in
privacy when they interact with Alice, and must be compensated for this loss. To
make matters worse, these individuals are rational (i.e. selfish) agents, and are apt
to misreport their costs to Alice if doing so will result in a financial gain. This
places Alice’s problem squarely in the domain of mechanism design, and requires
Alice to develop a scheme for trading off statistical accuracy with cost, all while
managing the incentives of the individuals.

As an aside, this stylized problem broadly relevant to any organization that makes
use of collections of potentially sensitive data. This includes, for example, the use
of search logs to provide search query completion and the use of browsing history
to improve search engine ranking, the use of social network data to select display
ads and to recommend new links, and the myriad other data-driven services now
available on the web. In all of these cases, value is being derived from the statistical
properties of a collection of sensitive data in exchange for some payment.16.

Collecting data in exchange for some fixed price could lead to a biased estimate
of population statistics, because such a scheme will result in collecting data only
from those individuals who value their privacy less than the price being offered.
To obtain an accurate estimate of the statistic, it is therefore natural to consider
buying private data using an auction, which was recently considered in [Ghosh
and Roth 2011]. There are two obvious obstacles which one must confront when
conducting an auction for private data, and an additional obstacle which is less
obvious but more insidious. The first obstacle is that one must have a quantitative
formalization of “privacy” which can be used to measure agents’ costs under various
operations on their data. Here, differential privacy provides an obvious tool. For
small values of ε, because exp(ε) ≈ (1 + ε), it is natural to model agents as having
some linear cost for participating in a private study. We here imagine that each
agent i has an unknown value for privacy vi, and experiences a cost ci(ε) = εvi
when his private data is used in an ε-differentially private manner.17 The second

16The payment need not be explicit and/ or dollar denominated— e.g. it may be the use of a

“free” service.
17As we will discuss later, this assumption can be problematic.
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obstacle is that our objective is to trade off with statistical accuracy, and the latter
is not well-studied objective in mechanism design.

The final, more insidious obstacle, is that an individual’s cost for privacy loss
may be highly correlated with his private data itself! Suppose we only know Bob
has a high value for privacy of his AIDS status, and do not explicitly know, this is
disclosive because Bob’s AIDS status is likely correlated with his value for privacy.
More to the point, suppose that in the first step of a survey of AIDS prevalence,
we ask each individual to report their value for privacy, with the intention of then
running an auction to choose which individuals to buy data from. If agents re-
port truthfully, we may find that the reported values naturally form two clusters:
low value agents, and high value agents. In this case, we may have learned some-
thing about the population statistic even before collecting any data or making any
payments— and therefore, the agents will have already experienced a cost. As a
result, the agents may misreport their value, which could introduce a bias in the
survey results. This phenomenon makes direct revelation mechanisms problematic,
and distinguishes this problem from classical mechanism design.

5.2.1 Direct Revelation Mechanisms. Armed with a means of quantifying an
agent i’s loss for allowing his data to be used by an ε-differentially-private algorithm
(ci(ε) = εvi), we are almost ready to describe results for the sensitive surveyor’s
problem. Recall that a differentially private mechanism is some mapping M : T n →
O, for a general type space T . It remains to define what exactly the type space T is.
We will consider two models. In both models, we will associate with each individual
a bit bi ∈ {0, 1} which represents whether they satisfy the sensitive predicate P (i),
as well as a value for privacy vi ∈ R+.

(1) In the insensitive value model, we calculate the ε parameter of the private
mechanism by letting the type space be T = {0, 1}: i.e. we measure privacy
cost only with respect to how the mechanism treats the sensitive bit bi, and
ignore how it treats the reported values for privacy, vi.

18

(2) In the sensitive value model, we calculate the ε parameter of the private mech-
anism by letting the type space be T = ({0, 1} ×R+): i.e. we measure privacy
with respect to how it treats the pair (bi, vi) for each individual.

Intuitively, the insensitive value model treats individuals as ignoring the potential
privacy loss due to correlations between their values for privacy and their private
bits, whereas the sensitive value model treats individuals as assuming these correla-
tions are worst-case, i.e., their values vi are just as disclosive as their private bits bi.
[Ghosh and Roth 2011] show that in the insensitive value model, one can derive ap-
proximately optimal direct revelation mechanisms that achieve high accuracy and
low cost. By contrast, in the sensitive value model, no individually rational direct
revelation mechanism can achieve any non-trivial accuracy.

Note that here we are considering a setting in which private data and costs are
adversarially chosen. If we are willing to assume a known prior on agent costs (but
still assume adversarially chosen private bits bi), then it is possible to improve on
the results of Ghosh and Roth [2011], and derive Bayesian optimal mechanisms for

18That is, the part of the mapping dealing with reported values need not be differentially private.
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the sensitive survey problem as is done in [Roth and Schoenebeck 2012].

5.2.2 Take it Or Leave it Mechanisms. Given the impossibility result of Ghosh
and Roth [2011] for the sensitive value model, the immediate question is what is
possible in this setting. Two methods have been recently proposed, which we briefly
summarize here. Both approaches abandon direct revelation mechanisms in favor of
mechanisms which offer individuals take-it-or-leave-it offers, but both also require
subtle changes in how individuals’ privacy preferences are modeled. Readers are
directed to [Fleischer and Lyu 2012; Ligett and Roth 2012] for more details.

Circumventing Impossibility with a Sensitive Surveyor. Suppose an individual is
made a take it or leave it offer: “If you let us use your bit bi in an ε-differentially
private manner, I will give you $10.” If values are correlated with private data,
an agent’s response might reveal something about his bit bi beyond that which
is revealed through the differentially private computation. To model such corre-
lations, Fleischer and Lyu [2012] assume that each individual’s value vi is drawn
independently from one of two priors: vi ∼ Fx if bi = x for x = 0, 1, known
to Alice, the surveyor. Under this assumption, Fleischer and Lyu elegantly con-
struct a take-it-or-leave-it offer which an agent can truthfully decide to accept or
reject without revealing anything about his private bit! The idea is this: Alice
may choose some acceptance probability q ∈ [0, 1]. She picks p0, p1 such that
Prv∼F0

[v ≤ p0/ε] = Prv∼F1
[v ≤ p1/ε] = q. Alice can then offer the following take-

it-or-leave-it offer to each agent: “If you accept the offer and your (verifiable) bit
is x, I will pay you px dollars, for x = 1, 2.” The beauty of this solution is that
no matter what private bit the agent has, he will accept the offer with probability
q (where the probability is over the corresponding prior) and reject the offer with
probability 1 − q. Therefore, nothing can be learned about his private bit from
his participation decision, and so he has no incentive not to respond to the offer
truthfully. Using this idea, Fleischer and Lyu [2012] develop approximately optimal
mechanisms that can be used if the priors F0 and F1 are known.

Circumventing Impossibility with an Insensitive Surveyor. What if agent costs
are determined adversarially, and there are no known priors? Ligett and Roth
[2012] give an alternative solution for this case. To circumvent the impossibility
result of Ghosh and Roth [2011], Alice has one additional power: the ability to
accost random members of the population on the street, and present them with
a take-it-or-leave-it offer. Once individuals are presented with an offer, they are
free to accept or refuse as they see fit. However they do not have the option to not
participate. If they reject the offer, or even just walk away, this is observed by Alice.
This can be seen as a weakening of the standard individual rationality condition.
Because costs may be correlated with private data, merely by rejecting an offer
or walking away, Alice may learn something about the surveyed individual. If the
individual rejects the offer, he receives no payment and yet still experiences some
cost! This ends up giving a semi-truthfulness guarantee. If Alice makes an offer of
p dollars in exchange for ε-differential privacy, a rational agent will accept whenever
p ≥ εvi. However, rational agents may accept offers that are below their cost—
because they will still experience some cost by walking away. But these deviations
away from “truthfulness” are in only one direction, and only help Alice, whose
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aim it is to compute an accurate population statistic, and does not necessarily
care about protecting privacy for its own sake. Ligett and Roth [2012] thus obtain
non-trivial accuracy in the sensitive value model by making Alice insensitive to the
privacy concerns of the agents she surveys, by making offers that they can refuse,
but can’t avoid.

5.3 Better Measures for the Cost of Privacy

In the previous section, we took the naive modeling assumption that the cost experi-
enced by participation in an ε-differentially private mechanism M was ci(o,M, t) =
εvi for some numeric value vi. This measure is problematic for several reasons.
First, as pointed out by [Nissim et al. 012a], although differential privacy promises
that any agent’s loss in utility is upper bounded by a quantity that is (approxi-
mately) linear in ε, there is no reason to believe that agents’ costs are lower bounded
by such a quantity. That is, while taking ci(o,M, t) ≤ εvi is well motivated, there is
little support for making the inequality an equality. Second, as discussed in [Ligett
and Roth 2012], any privacy measure which is a deterministic function only of ε
(not just a linear function) leads to problematic behavioral predictions.

So how else might we model ci? One natural measure, proposed by [Xiao 2013],
is the mutual information between the reported type of agent i, and the outcome
of the mechanism.19 For this to be well defined, we must be in a world where each
agent’s type ti is drawn from a known prior, ti ∼ T . Each agent’s strategy is a
mapping σi : T → T , determining what type he reports, given his true type. We
could then define

ci(o,M, σ) = I(T ;M(t−i, σ(T )),

where I is the mutual information between the random variable T representing the
prior on agent i’s type, and M(t−i, σ(T )), the random variable representing the
outcome of the mechanism, given agent i’s strategy.

This measure has significant appeal, because it represents how “related” the
output of the mechanism is to the true type of agent i. However, in addition to
requiring a prior over agent types, [Nissim et al. 012a] observe an interesting paradox
that results from this measure of privacy loss. Consider a world in which there are
two kinds of sandwich breads: Rye (R), and Wheat (W). Moreover, in this world,
sandwich preferences are highly embarrassing and held private. The prior on types
T is uniform over R and W, and the mechanismM simply gives agent i a sandwich
of the type that he purports to prefer. Now consider two possible strategies, σtruthful

and σrandom. σtruthful corresponds to truthfully reporting sandwich preferences (and
subsequently leads to eating the preferred sandwich type), while σrandom randomly
reports independent of true type (and results in the preferred sandwich only half
the time). The cost of using the random strategy is I(T ;M(t−i, σrandom(T )) = 0,
since the output is independent of agent i’s type. On the other hand, the cost of
truthfully reporting is I(T ;M(t−i, σtruthful(T )) = 1, since the sandwich outcome is
now the identity function on agent i’s type. However, from the perspective of any

19The seminal work of [Xiao 2013] was the first to explore mechanism design with agents who

have costs for privacy loss. It proposes several measures of privacy cost, but mutual information
was the first, and helped drive subsequent work.
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outside observer, the two strategies are indistinguishable! In both cases, agent i
receives a uniformly random sandwich. Why then should anyone choose the random
strategy? So long as an adversary believes they are choosing randomly, they should
choose the honest strategy.

[Chen et al. 2013] propose a different approach, not needing a prior on agent
types. They propose the following cost function:20

|ci(o,M, t)| = ln

(
max
ti,t′i∈T

Pr[M(ti, t−i) = o]

Pr[M(t′i, t−i) = o]

)
.

Note that if M is ε-differentially private, then

max
t∈T n

max
o∈O

max
ti,t′i∈T

ln

(
Pr[M(ti, t−i) = o]

Pr[M(t′i, t−i) = o]

)
≤ ε.

That is, we can view differential privacy as bounding the worst-case privacy loss over
all possible outcomes, whereas the measure proposed by [Chen et al. 2013] considers
only the privacy loss for the outcome o (and type vector t) actually realized. Thus,
for any differentially private mechanism M, |ci(o,M, t)| ≤ ε for all o, t, but it will
be important that the cost can vary by outcome.

[Chen et al. 2013] then consider the following allocation rule for maximizing social
welfare F (o) =

∑n
i=1 ui(o).

21 We discuss the case when |O| = 2 (which does not
require payments), but the authors analyze the general case (with payments), which
privately implements the VCG mechanism for any social choice problem.

(1) For each outcome o ∈ O, choose a random number ro from the distribution
Pr[ro = x] ∝ exp(−ε|x|).

(2) Output o∗ = arg maxo∈O(F (o) + ro)

[Chen et al. 2013] show that the above mechanism is ε-differentially private, and
that it is truthful for privacy aware agents, so long as for each agent i, and for the
two outcomes o, o′ ∈ O, |µi(o)− µi(o′)| > 2ε. Note that this will be true for small
enough ε so long as agent utilities for outcomes are distinct. The analysis is elegant,
and proceeds by considering an arbitrary fixed realization of the random variables
ro, and an arbitrary deviation t′i from truthful reporting for the i’th agent. There
are two cases: In the first case, the deviation does not change the outcome o of
the mechanism. In this case, neither the agent’s utility for the outcome µi, nor
his cost for privacy loss ci change at all, and so the agent does not benefit from
deviating. In the second case, if the outcome changes from o to o′ when agent
i deviates, it must be that µi(o

′) < µi(o) − 2ε. By differential privacy, however,
|ci(o,M, t)− ci(o′,M, t)| ≤ 2ε, and so the change in privacy cost cannot be enough
to make it beneficial.

Finally, [Nissim et al. 012a] take the most conservative approach to modeling
costs for privacy. Given an ε-differentially private mechanismM, they assume that

ci(o,M, t) ≤ εvi,

20In fact, the upper bound they propose is more general, replacing the ln(·) used here with any

function Fi satisfying certain conditions.
21This allocation rule is extremely similar to, and indeed can be modified to be identical to the
exponential mechanism.
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for some number vi. This is similar to the linear cost functions of [Ghosh and
Roth 2011] that we considered earlier, but crucially, [Nissim et al. 012a] assume
only an upper bound. This assumption is satisfied by all of the other models for
privacy cost that we have considered thus far. They show that many mechanisms
that combine a differentially private algorithm with a punishing mechanism that
has the ability to restrict user choices, like those from [Nissim et al. 012b] that we
considered in Section 3.3, maintain their truthfulness properties in the presence of
agents with preferences for privacy, so long as the values vi are bounded. Moreover,
they go on to show that for a great many distributions from which the values vi
might be drawn (even with unbounded support), it is still possible to make truthful
reporting a dominant strategy for almost all agents, which is often sufficient to get
strong welfare guarantees.

6. CONCLUSIONS AND OPEN QUESTIONS

The science of privacy, and its burgeoning connections to game theory and mecha-
nism design are still in their very early stages. As such, there remain more questions
than answers at this intersection, but there is already more than enough evidence
that the area is rich, and that the answers will be fascinating. We here suggest just
a couple of the high-level questions that deserve to be better understood:

(1) Why do people care about privacy? In Section 4 we began to see some answers
to this question: people might care about privacy, because of some repeated
interaction, in which the revelation of their type at one stage of the interaction
might cause them quantifiable harm at some later stage of the game. This
literature has already provided us with some insights, but only at a very coarse-
grained level. The recent literature on differential privacy lets us discuss privacy
as a quantitative, rather than just qualitative property. Can we formulate a rich
model in which we can directly derive agents’ values for (differential) privacy in
various settings? This study will surely help us understand how we should in
general model agent costs for privacy when trying to design truthful mechanisms
for agents who explicitly experience costs for privacy in their utility functions,
as we considered in Section 5.

(2) How should we model privacy costs that are not captured by information the-
oretic measures like differential privacy, but nevertheless seem to have real
economic consequences? In particular, how can we model the fact that search
costs appear to factor into peoples’ perceptions of privacy? For example, there
has been a recent uproar about Facebook’s new Graph Search tool.22 From the
perspective of differential privacy, the addition of this feature, which merely
eases the search through information that was already in principle publicly
available, should have had no incremental privacy cost. Nevertheless, it plainly
does. Is there a clean economic model that captures this?

(3) In settings in which agents care about privacy, to what extent does dominant
strategy truthfulness remain the right solution concept? Depending on the
privacy model chosen, it is no longer clear that the revelation principle holds

22See e.g. http://www.slate.com/blogs/future_tense/2013/01/23/actual_facebook_graph_

searches_tom_scott_s_tumblr_a_privacy_wake_up_call.html
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in such settings, because agents have preferences not only over the outcome
chosen by the mechanism, but also over the mechanism which chooses the
outcome itself. Perhaps in such settings, better outcomes can be implemented
in Nash equilibrium than can be implemented in dominant strategies?

(4) Differential privacy is clearly a powerful tool for reasoning about noise and
stability in mechanism design. Already in Section 3, we saw several examples
of results easily derived via differential privacy, which were are not known how
to accomplish in any other way. It seems like a particularly promising tool
for reasoning about asymptotic truthfulness, which is a compelling second-best
solution concept when exactly dominant strategy truthful mechanisms are not
known. Can we use differential privacy to map out the power of asymptotically
truthful mechanisms? How much more powerful is this class as compared to
the set of exactly truthful mechanisms?

(5) In several settings of applied interest, a regulator may wish to reveal summary
information about the industry she regulates to guide policy and alleviate infor-
mation asymmetries. In doing this, she must balance the privacy of individual
participants, which arise from competitive concerns, trade secrets etc. Can
differential privacy and its variants assist in the design of such information re-
lease? How should policy be designed given that the summary used to guide
it is privacy-preserving and therefore necessarily coarse? [Flood et al. 2013]
propose and study these concerns in the context of the financial industry, and
provide an excellent overview of the trade-offs involved.
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