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We present a formal framework for handling deviation in settings where players divide resources
among multiple projects, forming overlapping coalition structures. Having formed such a coalition

structure, players share the revenue generated among themselves. Given a profit division, some

players may decide that they are underpaid, and deviate from the outcome. The main insight of
the work presented in this survey is that when players want to deviate, they must know how the

non-deviators would react to their deviation: after the deviation, the deviators may still work with

some of the non-deviators, which presents an opportunity for the non-deviators to exert leverage
on deviators. We extend the overlapping coalition formation (OCF) model of Chalkiadakis et

al. [2010] for cooperation with partial coalitions, by introducing arbitration functions, a general

framework for handling deviation in OCF games. We review some interesting aspects of the model,
characterizations of stability in this model, as well as methods for computing stable outcomes.

Categories and Subject Descriptors: J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics; I.2.11 [Computing Methodologies]: Artificial Intelligence—Distributed Ar-

tificial Intelligence; F.2 [Theory of Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Algorithms; Economics; Theory
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1. INTRODUCTION

Consider a group of players that possesses commodities of various types, and can
generate revenue by combining fractions of their resources. Having divided their
resources and generated profits, players must now agree on some reasonable manner
in which to split the revenue among themselves. The problem of revenue sharing
among collaborative entities is often modeled using cooperative game theory [Peleg
and Sudhölter 2007]; however, classic cooperative game theory assumes that each
player can only join a single coalition, to which it fully allocates its resources, i.e.,
players form a coalition structure by splitting into disjoint groups. In the setting
we describe above, players may join several coalitions, allocating fractions of their
resources to several projects.

Chalkiadakis et al. [2010] propose a model for settings where players divide re-
sources among several projects. Formally, given a set of players N = {1, . . . , n}, a
coalition in an overlapping coalition formation (OCF) game is a vector c ∈ [0, 1]n,
where ci describes the percentage of player i’s resources that are committed to the
coalition c. The value of a coalition c is denoted v(c), i.e., the revenue that can
be generated if players contribute shares of their resources as per c is given by a
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characteristic function v : [0, 1]n → R. Thus, an OCF game is a tuple G = 〈N, v〉.
This definition generalizes classic cooperative games, where a coalition is a subset
of players S ⊆ N , and the characteristic function u : 2N → R is from subsets of N
to R.

When players divide resources among several coalitions, they form a coalition
structure. A coalition structure CS is a list of coalitions (c1, . . . , cm), such that for
all i ∈ N , and for all c ∈ CS , ci is the amount of resources that player i allocates
to the coalition c; naturally, we require that every player contributes at most 100%
of his resources, so

∑
c∈CS ci ≤ 1.

Having formed a coalition structure CS , the players must agree on a way of
dividing payoffs from coalitions in CS ; such a payoff division, x, consists of a list
of vectors (x(c))c∈CS , such that

∑n
i=1 xi(c) = v(c) and if ci = 0 then xi(c) = 0.

That is, the profits of a coalition c should be distributed within the support of c,
i.e., the set of players with ci > 0 (denoted supp(c)). A payoff division that satisfies
these properties is called an imputation for CS . A coalition structure-imputation
pair (CS ,x) is called an outcome.

One is naturally interested in families of outcomes that satisfy certain desirable
properties. Classic cooperative game theory offers several classes of payoff divisions,
or solution concepts; one such class of payoff divisions is called the core. The core
of a classic cooperative game is a payoff division such that for every subset S ⊆ N ,
the total payoff to the set S is at least the revenue that S can generate on its own.
Alternatively, the core can be though of as the set of all outcomes that are resistant
to deviation. A deviation can be thought of as follows: after players partitioned
into disjoint coalitions (in a non-OCF game) and divided profits, a set S ⊆ N
would want to deviate from the resulting outcome if the members of S could work
together, generate a revenue of u(S), and divide this revenue among themselves so
that each member of S receives strictly more than what it currently receives. If no
such set exists, then the outcome is stable.

Defining stability in OCF games should follow a similar line of reasoning; an
outcome (CS ,x) is stable if no set S ⊆ N would want to deviate from it. However,
as Chalkiadakis et al. [2010] note, deviation in OCF games is a complex matter.
Consider a simple exchange market, where a single seller s provides some commodity
to two buyers, b1 and b2. The seller s has 100kg of sugar; he agrees to sell 40kg to
b1 and 60kg to b2, and does so with a uniform price of 5$ per kg, for a total revenue
of 200$ from b1 and 300$ from b2. Suppose that another buyer, b3, wants 30kg of
sugar, offering 7$ per kg. Here, s would want to withdraw 30kg of sugar that were
committed to b1 and b2, and sell them to b3. Suppose s withdraws 30kg from b1 and
sells them to b3; the profitability of this action depends on what happens after the
deviation. One option is that nothing happens; b1 would buy the remaining 10kg
of sugar from s. Alternatively, b1 could refuse to collaborate with s if s deviates,
since he feels cheated. In this case, it is still worthwhile for s to switch to working
with b3 (he earns 10$ more), albeit less so. A third possibility is that b2 would not
work with s either, for example, if b1 and b2 form a cartel. While b2 was effectively
not hurt by s’s actions, he may still not wish to work with him, or at the very least
threaten to do so in order to deter s from deviating.

To conclude, when assessing the desirability of deviation in OCF games, a devi-
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ating set must know how others react to the deviation.
Chalkiadakis et al. [2010] identified this interesting feature of OCF games, and

introduced three possible reactions to deviation: the conservative, refined, and
optimistic reaction. Under the conservative reaction, S may expect no payoffs from
any coalition; like in the non-overlapping case, it assumes that it is “on its own” if
it deviates, and assesses the desirability of deviation against the most that it can
make on its own. Under the refined reaction, S may expect payoff from all coalitions
that were not changed by the deviation; if a deviating set does not change some
coalition c when it deviates, it keeps its original payment from c. Finally, under
the optimistic reaction, S may still receive payoff from a coalition c, if it can reduce
its contribution to c while still paying all agents in N \S the same amount they got
from c under (CS ,x); in other words, S may withdraw resources from a coalition,
so long as it agrees to assume the damage that its deviation caused.

2. ARBITRATION FUNCTIONS

The three possible reactions to deviation that Chalkiadakis et al. [2010] describe
are by no means exhaustive: there can be many reactions to deviation, and they
may be quite general in their nature. A reaction that is moderated by a contrac-
tual agreement between involved parties can be quite complex, detailing fines and
rewards, depending on what changes to the original agreement are made.

Zick and Elkind [2011] propose a framework that is able to capture such general
behavior using a single function that specifies what happens when a set deviates.
When a set S deviates from an outcome (CS ,x) it specifies how much resources it
withdraws from each coalition that is not fully controlled by it, i.e, given a coalition
c ∈ CS such that supp(c) contains non-S members, the way that S deviates from
c is given by a vector δ(c) such that δ(c) ≤ c, and supp(δ(c)) ⊆ S. The first
requirement states that S cannot withdraw more from c than what it has invested
to begin with, and the second ensures that only members of S withdraw resources
from c. The arbitration function [Zick and Elkind 2011] is a function α that, given
i) an outcome (CS ,x) ii) a set S ⊆ N iii) a deviation δ of S from CS and iv) a
coalition c ∈ CS containing non-S members, assigns a payoff α(c) ∈ R. Note that
α can be any number in R: it may be negative, i.e., a coalition may fine deviators,
and it may be arbitrarily high, i.e., actively rewarding deviation.

We let S use whatever resources it withdrew from CS using δ plus whatever
resources are in coalitions it fully controls to generate revenue. This revenue, plus
the payoffs to S from coalitions it deviated from, given by α(c), is the total revenue
S gets from deviating. Given an outcome (CS ,x) and a set S, let A∗(CS ,x, S) be
the most that S can get by deviating from (CS ,x). This framework generalizes the
reactions to deviation described by Chalkiadakis et al. [2010]. Under the conserva-
tive arbitration function, αc(c) ≡ 0: S always receives nothing from non-deviators.
For the refined arbitration function, αr(c) is the payoff to S from c under (CS ,x)
iff δ(c) = 0n, i.e., if S does not change a coalition, it is allowed to keep all of its
payoffs from that coalition. Finally, for the optimistic arbitration function, we have
αo(c) =

∑
i∈S xi(c) + v(c− δ(c))− v(c); that is, c pays S its original payoff, plus

the marginal loss its deviation has caused.
Using arbitration functions, we can easily define other reactions to deviation: the
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sensitive arbitration function allows the deviators to keep payments from coalitions
whose members were not hurt by the deviation. Formally, αs(c) =

∑
i∈S xi(c) iff

δ(c′) = 0n for all c′ ∈ CS such that supp(c′)∩ supp(c)∩ (N \S) 6= ∅. This example
shows that the amount that S receives from a coalition c need not depend just on
the effect that S had on c.

A deviation of S from (CS ,x) is called A-profitable if S can use the resources
it withdrew to generate profits, and divide those profits plus the payoffs from the
arbitration function so that every i ∈ S gets strictly more than pi(CS ,x). Finding
A-profitable deviations is a complex task: if, after deviation, S forms a coalition
structure CSd, it must choose an imputation xd ∈ CSd; thus, payoffs to players
must satisfy the no side payments rule. Similarly, α(c) can only be divided among
players in S who still contribute to c after the deviation. It is possible that even if
A∗(CS ,x, S) is strictly more than the total payoff to S under (CS ,x), there is no
way for S to divide revenue from the deviation in such a way that every i ∈ S is
strictly better off. However, Zick and Elkind [2011] show the following result.

Theorem 2.1 [Zick and Elkind 2011]. If A∗(CS ,x, S) is more than the pay-
off that S receives under (CS ,x), then there is a subset S′ ⊆ S that can A-profitably
deviate.

Theorem 2.1 implies an equivalence between outcomes where all S ⊆ N are paid
at least A∗(CS ,x, S), and outcomes where no S ⊆ N can A-profitably deviate from
(CS ,x). Such outcomes are called A-stable; the A-core of an OCF game G is the
set of all A-stable outcomes.

3. CHARACTERIZING A-STABILITY IN OCF GAMES

How can we decide if an OCF game admits a stable outcome? In classic cooperative
games, this question is answered by the Bondareva–Shapley theorem [Bondareva
1963; Shapley 1967]. Briefly, a collection of weights (δS)S⊆N is called balanced if for
all i ∈ N ,

∑
S:i∈S δS = 1, and δS ≥ 0 for all S ⊆ N . Bondareva [1963] and Shapley

[1967] show that a cooperative game G = 〈N, u〉 has a non-empty core iff for any
balanced collection of weights,

∑
S⊆N δSv(S) ≤ opt(G), where opt(G) is the value

of an optimal coalition structure in G. Zick et al. [2012] show that OCF games with
A-stable outcomes admit a similar characterization.

Sometimes, stability of an OCF game can be derived from the stability of a
related classic game. Specifically, given an OCF game G = 〈N, v〉, the discrete
superadditive cover of G is a classic game Ḡ = 〈N,Uv〉 where Uv(S) is the most
that the members of S can make using only their resources. Zick et al. [2012] show
that the conservative core of G is essentially equivalent to the (classic) core of the
discrete superadditive cover of G.

Theorem 3.1 [Zick et al. 2012]. Given an optimal coalition structure CS and
a payoff division p in the core of Ḡ = 〈N,Uv〉 there exists an imputation x ∈ I(CS )
such that each player i ∈ N receives a total payoff of pi under (CS ,x).

Theorem 3.1 immediately implies that if the discrete superadditive cover of G is
convex [Shapley 1971], then the conservative core of G is not empty. Further,
all optimal coalition structures are equally easy to stabilize: if CS ,CS ′ are two
optimal coalition structures and the conservative core of G is not empty, there exist
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imputations x ∈ I(CS ) and x′ ∈ I(CS ′) such that (CS ,x) and (CS ′,x′) are both in
the conservative core, and the payoff to any player i ∈ N is the same under (CS ,x)
and (CS ′,x′).

In contrast, for the refined core the latter property does not hold: it is possible
that even if CS is an optimal coalition structure and the refined core is not empty,
there is no x ∈ I(CS ) such that (CS ,x) is in the refined core. This indicates that
the refined core is considerably more complex than the conservative core. Zick et al.
[2012] characterize refined-stable outcomes in a manner similar to the Bondareva–
Shapley theorem. Using this characterization, one can show a sufficient condition
for the non-emptiness of the refined core of a game.

Theorem 3.2. Given an OCF game G = 〈N, v〉, if v∗ is homogeneous of degree
k ≥ 1, then the refined core of G is not empty.

In fact, one can show that when v∗ is homogeneous of degree k ≥ 1, any optimal
coalition structure can be stabilized with respect to the refined arbitration function.

4. COMPUTING A-STABLE OUTCOMES

There is a well-established body of literature studying computational aspects of
cooperative games (see [Chalkiadakis et al. 2011]). Chalkiadakis et al. [2010] study
some computational issues in OCF games, focusing their attention on a class of OCF
games called threshold task games, and conservative core stability. Zick et al. [2012]
study computational aspects of general classes of OCF games. They show that,
while the problem of finding A-stable outcomes is (rather unsurprisingly) NP-hard,
it is possible to find A-stable outcomes in polynomial time if players are limited
in their interactions: i) their resources are integer weights that are polynomial in
n; ii) they are not allowed to form large coalitions; and iii) their interactions are
simple in structure (they form a tree, or, more generally, have bounded treewidth).
Zick et al. [2012] also observe that the complexity of finding A-stable outcomes is
highly dependent on the structure of A; if A takes on too complex a structure (for
example, if it is given by a complicated legal contract), it is NP-hard to decide if
an outcome is A-stable. In other words, if we assume bounded rationality, then a
complex arbitration function is an effective barrier to deviation.

Finally, Zick et al. [2012] study a class of games (linear bottleneck games, or
LBGs) which are guaranteed to have a non-empty optimistic core; this class is a
generalization of multicommodity flow games, and captures several fractional com-
binatorial optimization problems (such as fractional matching markets, fractional
graph covering, etc.).

5. DISCUSSION

We believe that the main contribution of the works described in this survey is the
introduction of a new paradigm for studying strategic interactions among rational
agents. Non-deviators can also be strategic, and use their leverage in order to
enforce certain outcomes. Enforcement can be either in the form of hefty penalties
for deviation, or via exacting high computational costs on deviators. Non-deviator
reaction has been implicitly studied before—every strategic interaction must assume
something about the behavior of non-deviators—and has recently received attention
outside the framework of OCF games. Brânzei et al. [2013] study different reactions
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to deviations in stable matching, and Ackerman and Brânzei [2012] study reactions
to deviations in collaboration networks, and the Nash equilibria that result. Other
research fields could also benefit from reexamining the way non-deviators react to
deviations in strategic settings.

In this survey, we present a general framework for handling deviation in OCF
games, and discuss algorithmic and game-theoretic properties of the resulting model.
Our work can be extended in several interesting ways. First, while exact algorithms
for computing solution concepts in OCF games have been studied, approximately
A-stable outcomes are also of interest; this is akin to the cost of stability in classic
cooperative games [Bachrach et al. 2009]. Second, while we identify properties of
OCF games that ensure stability for a given arbitration function, one can alterna-
tively fix an OCF game G, and identify arbitration functions that ensure that G is
stable.
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