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In this note we elaborate on an emerging connection between three areas of research: (a) the con-

cept of a risk measure developed within financial mathematics for reasoning about risk attitudes
of agents under uncertainty, (b) the design of automated market makers for prediction markets,

and (c) the family of probability distributions known as exponential families.
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1. INTRODUCING RISK MEASURES

Imagine that a farmer must decide between several crops to plant for the upcoming
growing season. The cost of each crop is different and the yield of each crop depends
differently on weather conditions; one may be better suited for cold temperatures,
another for heavy rainfall, and yet another for drought. The farmer’s profits for
the harvest will thus be determined not only by the cost of the seeds and planting,
but also by the suitability of the chosen crops for the actual weather conditions
during the season. Given that the weather is uncertain, how should the farmer
choose the crops to maximize her profit? Generally speaking, we can model this
type of problem by specifying a set Ω of future states of the world (in this case, the
weather during the season), and considering the agent’s position X : Ω→ R, which
specifies the monetary payoff to the agent (in this case, the farmer’s profit) in each
such state ω ∈ Ω. Now the agent’s actions each induce a different position, and the
problem reduces to measuring the quality of such positions and choosing the best.

There are, of course, many ways to evaluate a financial position, including von
Neumann-Morgenstern expected utility theory. In this note, we focus on the con-
cept of a (convex ) risk measure, which was introduced by the academic finance
community [Artzner et al. 1999; Delbaen 2002; Föllmer and Schied 2004] and has
appeared more recently in computer science [Othman and Sandholm 2011; Hu and
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Storkey 2014]. Here, an agent chooses the position which minimizes her risk mea-
sure. In general, risk measures are convex functions of positions which satisfy
certain axioms, such as monotonicity (X > X ′ ⇒ ρ(X) ≤ ρ(X ′)) and cash invari-
ance (ρ(X+ c1) = ρ(X)− c, where 1 denotes the sure payoff of $1). A major focus
of this note will be the entropic risk measure; for any probability measure p over
Ω, entropic risk is given by:

ρp(X) := log

∫
Ω

exp(−X)dp (1)

The entropic risk measure is related to one popular measure of utility of wealth m,
u(m) = − exp(−m), commonly known as the exponential utility function. An agent
holding some belief distribution p on Ω who maximizes expected exponential utility
(under p) is identical to an agent who minimizes the entropic risk ρp. That is, for
any two positions X,X ′, we have that Ep[u(X)] ≥ Ep[u(X ′)]⇐⇒ ρp(X) ≤ ρp(X ′).
More generally, we can always construct a risk measure from any concave utility
function u(·) and belief distribution p. As noted by [Föllmer and Schied 2004], we
may define a risk measure ρu,p(X) := inf {m : Eω∼p[u(X(ω) +m)] ≥ u0}. That is,
ρu,p(X) is the least amount of money the agent needs to maintain expected utility
above some default threshold u0, while holding position X.

It is typical to restrict the space of positions with respect to a payoff function
φ : Ω→ Rd, such that each position X under consideration can be written X(ω) =
r>φ(ω) for some r ∈ Rd. Given a fixed φ, we will often abuse notation and write
ρp(r) in place of ρp(X) for the X defined above, and consider r to be the “compact”
position. As we will see, this compact form lends itself well to the prediction market
setting, where the component φi(·) corresponds to the payout amount for the ith
outcome-contingent contract sold in the market. In addition, for any r, q ∈ Rd it is
convenient to define ρp(r|q) := ρp(r + q) − ρp(q) which may be interpreted as the
relative risk of r given a current position q.

2. MARKET MAKING IN PREDICTION MARKETS

Risk measures provide a surprisingly natural object to design a prediction mar-
ket via an automated market maker. Prediction markets facilitate aggregation of
information via financial incentives, and market designers typically aim to yield
accurate predictions of uncertain future events. Goods in these markets correspond
to securities with payoffs contingent on some future outcome. The goal is that
the prices of these securities should reflect a useful aggregate of information from
market participants.

Much attention has been been given to the design of automated market makers
which facilitate the market by offering to trade with any party at a given price.
The task of the market maker is to adjust these prices according to demand. Vari-
ous formulations of automated market makers have been proposed, such as market
scoring rules [Hanson 2003], and the constant-utility market maker [Chen and Pen-
nock 2007]; one that has received considerable attention is the cost function market
maker [Abernethy et al. 2013; Chen and Pennock 2007]. In this framework, the
market maker posesses a cost function C : Rd → R and a current “liability” q ∈ Rd;
a trader purchasing a bundle of securities r ∈ Rd pays C(q+r)−C(q) to the market
maker, who then updates the liability to q + r.
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In [Abernethy et al. 2013], the cost function C is required to satisfy certain
axioms (e.g. no arbitrage, expressiveness), which turn out to be essentially the same
axioms as those for risk measures mentioned above. Thus, we may equivalently
think of the market maker as possessing a compact position q and risk measure
ρ(q) := C(−q). Then a trader wishing to purchase bundle r must pay the market
maker ρ(q−r)−ρ(q) = ρ(−r|q).1 It is easy to check that this transaction leaves the
market maker’s risk unchanged regardless of r, via the cash-invariance principle.
Finally, it is interesting to note that the constant-utility market maker of [Chen
and Pennock 2007], when viewed as a risk measure, is the same as ρu,p from above.

3. MARKET SEMANTICS OF EXPONENTIAL FAMILY DISTRIBUTIONS

We will now switch gears to talk about a popular family of probability distributions
that turn out to be naturally connected with the entropic risk measure. Given
access to empirical averages of some statistics of data, a natural question to ask
is if we can find a distribution whose expected statistics match these observations.
Exponential family distributions arise as the unique distribution which produce the
desired statistics while maximizing Shannon entropy.

Nearly all of the popular probability distributions utilized in the literature can
be expressed as an exponential family, including the Gaussian, the multinomial,
the Poisson, etc. Let us consider, for example, the Gaussian distribution on a
real-valued variable x. If instead of the typical parameters of mean µ and variance
σ2, we use the natural parameters θ =

(
µ
σ2 ,

−1
2σ2

)
and we define the vector function

φ(x) := (x, x2), then we see that the probability density of the Gaussian can be
rewritten as pθ(x) ∝ exp(θ>φ(x)).

The probability density of all exponential families have a similar form, which we
now describe. Given a space Ω and any function φ : Ω → Rd, we can define a
probability density for every parameter vector θ in some feasible set Θ as

pθ(ω) := exp(θ>φ(ω)−A(θ)) where A(θ) := log
∫

Ω
exp(θ>φ(ω))dν. (2)

The function A(·) is the normalization factor and is commonly known as the log
partition function. It may not be lost on the reader that the definition of A(·)
is conspicuously similar to the entropic risk defined in (1). Indeed, recent work
[Abernethy et al. 2014; Frongillo 2013] has explored an alternative semantic inter-
pretation of the exponential family framework: one can design a market maker by
using the log partition function A(·) as a cost function (equivalently, risk measure).
That is, we can imagine a market maker selling d reference securities which pay
out according to function φ(ω) ∈ Rd upon observing the outcome ω. The market
maker can interpret its position q as a vector of natural parameters θ, so that when
traders request to purchase a share bundle r ∈ Rd, the market maker charges the
trader A(θ + r)−A(θ) and, for outcome ω, pays the trader r>φ(ω).

This characterization of the exponential family distribution with market seman-
tics gives rise to a number of nice interpretations:

(1) Given the market maker’s position θ, the “market prices” of the d securities
announced by the market maker are identical to the mean parameters of pθ.

2

1Note the change of sign, as risk measures deal with gains whereas cost functions deal with losses.
2The mean parameters of a distribution p are defined as µθ := Eω∼p[φ(ω)].
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(2) We can view the market as simply updating its belief according to new infor-
mation (i.e. trade), or we can alternatively view the market maker as simply
maintaining constant risk according to the entropic risk measure.

(3) We can imagine a trader in this market, with some initial belief pθ, who trades
to minimize the entropic risk measure ρpθ (·); as mentioned, this is equivalent to
the trader maximizing the expected exponential utility. When the trader invests
in a set of shares r, this will clearly affect future investment decisions. But the
effect on the trader has two potential interpretations: (i) the agent updates the
risk measure to ρpθ (·|r) or (ii) the agent replaces the original belief pθ with an
updated belief pθ+r. Indeed, the risk measure ρpθ (·|r) is identical to ρpθ+r (·),
suggesting that one’s portfolio and one’s belief parameters are interchangeable
quantities within this market framework.

(4) We can imagine a trader who knows the true distribution p∗, and that p∗ = pθ̂ is
a member of the exponential family. If the market maker’s position is currently
θ, then the trader has the potential to earn expected profit in the amount of
DA(θ, θ̂) = KL(pθ̂||pθ), the Kullback-Leibler divergence between pθ̂ and pθ.

3

The trader achieves this by purchasing θ̂ − θ shares.

It is worth noting that many of the above properties hold more generally for other
distribution families, in particular the class of generalized exponential families.4

4. INFORMATION AGGREGATION IN PREDICTION MARKETS

A central thread of research in the prediction market literature seeks to understand
how the market aggregates the information of its participants. Results in this vein
depend heavily on the equilibrium concept used, as well as how trader behavior is
modeled. Many existing results show natural aggregation properties of the market
prices, or equivalently, mean parameters [Wolfers and Zitzewitz 2006; Othman and
Sandholm 2010; Frongillo et al. 2012]. Here we will present aggregation results
which operate in the share space, or equivalently, in the natural parameters.

Consider a market marker with cost function based on the log partition func-
tion (2) as described above. Assuming that traders in this market wish to max-
imize expected utility with respect to their beliefs, we seek to characterize the
market equilibrium, which we define to be the final market state after which no
trader wishes to continue trading. It was shown by [Abernethy et al. 2014] that,
when each trader i has exponential utility with risk tolerance parameter bi and
exponential-family belief parameters θ̂i, the market equilibrium becomes

θfinal = θinit +
∑n
j=1 δj =

θinit+
∑n
i=1 biθ̂i

1+
∑n
i=1 bi

, (3)

where δi are trader i’s security purchases and θinit is the initial market state. In
other words, the equilibrium state is a risk-tolerance-weighted average of the natural
parameters of the traders and the market maker, with the more risk tolerant traders
taking on proportionally more of the final position.

3The notation Df (x, y) refers to the Bregman divergence defined as f(x)− f(y)−∇f(y)>(x− y).
4Introduced by [Grünwald and Dawid 2004], these families are maximum-entropy distributions
for entropy functions other than Shannon entropy. For details, see [Frongillo 2013, Chap. 4.3].
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This result is quite natural, but appears to depend on the synergy between ex-
ponential families and exponential utility. Surprisingly, it is shown in [Barrieu and
Karoui 2007; Frongillo and Reid 2014] that this result extends to risk-tolerance
families of arbitrary risk measures: if the market maker is risk-constant with risk
measure ρ, and each trader i seeks to minimize risk measure ρi(X) = biρ(X/bi),
then the equilibrium state is again the weighted average given by eq. (3).

While we have characterized the equilibrium state of these markets, it remains
to understand how to reach it. In particular, does a more dynamic model of trader
activity converge to this equilibrium? We consider a very simple dynamic: at each
time step, a trader is selected at random, who computes the optimal trade δt given
her current position in the market and the current market state. Then as long as
every trader has a nonzero probability of being selected in each round, the unique
fixed point of this dynamic is again the market equilibrium state (3). Moreover, we
can bound the rate of this convergence: the optimality gap at time t, as measured
by the sum of risks, is O(1/t). These convergence results continue to hold even
beyond the risk-tolerance setting, for any choice of risk measures ρi for the traders.
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