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The traditional econometrics approach for inferring properties of strategic interactions that are

not fully observable in the data, heavily relies on the assumption that the observed strategic
behavior has settled at an equilibrium. This assumption is not robust in complex economic

environments such as online markets where players are typically unaware of all the parameters of

the game in which they are participating, but rather only learn their utility after taking an action.
Behavioral models from online learning theory have recently emerged as an attractive alternative

to the equilibrium assumption and have been extensively analyzed from a theoretical standpoint

in the algorithmic game theory literature over the past decade. In this letter we survey two recent
works, [Nekipelov et al. 2015, Hoy et al. 2015], in which we take a learning agent approach to

econometrics, i.e. infer properties of the game, such as private valuations or efficiency of observed

allocation, by only assuming that the observed repeated behavior is the outcome of a no-regret
learning algorithm, rather than a static equilibrium. In both works we apply our methods to

datasets from Microsoft’s sponsored search auction system.
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1. INTRODUCTION

One of the main goals of the econometric analysis of strategic interactions is the
inference of the private parameters of participants based solely on their observed
actions. For instance, by observing a sequence of bids of a set of bidders participat-
ing repeatedly in an auction for a single item, one aims to infer the private value
each player has for the item. Another quantity of interest in such environments is
the efficiency of the outcome of the strategic interaction, i.e. was the item sold to
the player with the highest or approximately highest valuation.

Any such task requires an assumption on how the players make decisions in a
repeated game setting. One of the main assumptions that has been overwhelmingly
used in traditional econometrics is that the actions that we observe in the data are
the product of a Nash equilibrium behavior of the participants, i.e. a state of mutual
best-responses [Athey and Nekipelov 2010; Bajari et al. 2013]. Such an assumption
is rather strong, especially in complex environments such as online sponsored search
auctions, where the players do not even know who they are competing against and
do not even know all the parameters of the auction rule.

In such settings, players typically only observe periodic aggregate feedback of
what their utility would have been for any possible action they could have taken
in the last period. Therefore, models of strategic behavior should be better suited
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to such feedback structures and allow for bounded rationality of the players. One
such model of behavior that has been proposed in the game theory literature [Fos-
ter and Vohra 1997; Freund and Schapire 1999] and which has been extensively
analyzed in the algorithmic game theory literature in the past decade is that of no-
regret learning [Blum et al. 2008; Roughgarden 2009; Syrgkanis and Tardos 2013].

Fig. 1. Normalized bid for listings of a
single advertiser over the course of a week.

No-regret learning simply assumes that
players use a learning algorithm which,
over-time, guarantees them that their
utility is at least as good as the best
fixed action in hindsight. Thus un-
like the Nash equilibrium assumption,
no-regret learning allows for dynamic
player behavior and requires only
an approximate best-response property
and only on average over a time period.
Moreover, there exist many learning al-
gorithms that achieve this property and
which work even in the aforementioned
utility feedback model.

Dynamic behavioral models, such as
learning agent models, seem of practi-

cal importance, since in many real sponsored search datasets we observe bidders
changing their bids very frequently. For instance, in Figure 1 we depict the bids of
a subset of the listings of a single advertiser in Microsoft’s sponsored search auction
system over the period of a week.

2. VALUE INFERENCE FOR LEARNING AGENTS

In [Nekipelov et al. 2015] we address the problem of inferring player valuations
from a sequence of bid observations in a repeated sponsored search auction envi-
ronment. We propose an approach that solely assumes that the sequence of bids is
the outcome of a vanishing regret learning algorithm.

In the setting that we analyzed, advertisers submit a bid for being allocated
a position in the sponsored section of a search page. Advertisers are allocated
positions based on some quality score and their bid. When an advertiser is clicked
we assume that she receives some value v which is private and known only to her.
This per-click valuation is the parameter that we want to infer. We also assume
that the utility of an advertiser is quasi-linear in money, i.e., her utility is her value
minus her payment.

Assuming that the sequence of bids of an advertiser is an ε-regret sequence implies
that the utility that she derived over the entire period that we observe must be at
least as high as what any fixed bid would have achieved less some ε. This condition
gives a set of inequalities that the value of a player must satisfy, one inequality
per fixed bid. The intersection of these inequalities, is the set of values that are
rationalizable under the assumption of ε-regret. Varying ε, we get a set of pairs
(v, ε), such that value v is rationalizable under the ε-regret assumption. We refer to
this set as the rationalizable set. We show that the rationalizable set is convex and
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characterize its statistical learning properties. We show that the statistical learning
rate of the rationalizable set is remarkably comparable with the statistical learning
rates of methods that make the stronger equilibrium behavior assumption [Athey
and Nekipelov 2010].

If one wants to make a point prediction on the value of a player, then a selection
rule is needed, to select among the points in the rationalizable set. We analyze
the point that corresponds to the smallest multiplicative regret (the sequence has
multiplicative regret λ if the current utility of the bidder is at least (1−λ) times the
utility of any fixed bid). We apply this point-prediction approach to a dataset from
Microsoft’s sponsored search system. Figure 2 depicts the results of our analysis
when applied to all the listings of a single account. For the inferred values, we
depict the distribution of how much a player shades his value on average and the
distribution of the smallest rationalizable error across listings. We find that on
average for many accounts, advertisers bid around 60% of their inferred valuation
and that the smallest rationalizable error, though small, is bounded away from zero
for almost 70% of the listings (i.e. doesn’t satisfy the exact best response property).

Fig. 2. Distribution of bid shade ratio and smallest multiplicative regret across listings of a single

advertiser.

3. DATA-DRIVEN ROBUST EFFICIENCY GUARANTEES

In [Hoy et al. 2015], we give an econometric approach for directly inferring a lower
bound on the efficiency of the resulting allocation in a repeated auction setting,
without even inferring first the valuations of the players. Our approach is an empir-
ical analogue of the smoothness approach on quantifying the worst-case inefficiency
in games [Roughgarden 2009; Syrgkanis and Tardos 2013; Hartline et al. 2014] and
therefore inherits several robustness properties of smoothness. For instance, the
lower bound on the efficiency that is derived via our method holds regardless of
whether the data that we observe are the product of a Bayes-Nash equilibrium
where the player valuations are stochastic, or whether they are the product of a
learning process employed by an advertiser with a fixed valuation. Moreover, our
method enjoys fast statistical learning rates when only a sub-sample of the strategic
interactions is observed.

The smoothness approach of [Syrgkanis and Tardos 2013] and its refinement for
single-parameter mechanism design environments, via the revenue and value cover-
ing formulation of [Hartline et al. 2014] is based on the following argument: at any
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outcome of the game that satisfies a best-response or approximate best-response
property either the player is getting high utility and hence high allocation proba-
bility, or the payment that he needs to make in order to achieve a high allocation
probability given the competition must be high. The latter quantity is typically
referred to as the threshold payment.1 Subsequently, if this threshold payment is
closely related to the revenue that the auction receives then we can attribute this
term to the current welfare of some other bidder. Combining these two arguments
gives a lower bound on the efficiency of the allocation.

The crucial observation in [Hoy et al. 2015] is that both the threshold payment
quantity and the revenue are observed in the data. Thereby we do not need to
theoretically prove a relation between the two quantities. One simply needs to
analyze the relation of the two quantities from the data. This can potentially lead to
better efficiency guarantees than the theoretically provable ones. More importantly,
our approach can be used to infer efficiency lower bounds even in auctions where no
worst-case theoretical relation is known between the two quantities and therefore
no worst-case efficiency lower bound can be inferred simply from the rules of the
auction without observing the data. This is the case with the actual complex
sponsored search auction that is being used in Microsoft’s sponsored search system.
For instance, the application of our approach to real datasets for a selection of high-
revenue keywords yielded significant efficiency guarantees, ranging from 30% to 70%
of the efficiency of the optimal allocation.
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1The actual quantity that goes into the formulation in order to produce tight efficiency results is
slightly more involved and the reader is referred to the paper for a full exposition.
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