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1. INTRODUCTION

Traditional approximation algorithms attempt to find good solutions under the
constraint that they are also computable efficiently, as compared with an optimal
solution which could be obtained using unbounded resources. There are many
other notions of approximation, such as finding good solutions without knowing
the future in online algorithms, being able to access the input a limited number of
times in streaming algorithms, etc. In this letter we will focus on algorithms which
are only given ordinal information, and yet must compete with algorithms which
know the “ground truth” numerical information.

To illustrate when such constraints can arise, consider the following simple voting
scenario. As in classic voting and social choice literature, a set N of agents (vot-
ers) have preferences over a set of alternatives (candidates) A. As is done in the
utilitarian view of social choice (see [Boutilier et al. 2012; Harsanyi 1976]), and in
much of spatial preference literature (e.g., [Merrill and Grofman 1999; Enelow and
Hinich 1984; Conitzer 2009]), we assume that these preferences actually result from
underlying utilities or cost functions, with ci(a) being the cost that agent i assigns
to alternative a ∈ A occurring. For example, this can occur when both agents
and alternatives are points in some metric space, such as a (overly simplistic) one-
or two-dimensional space of “liberal-conservative” and “libertarian-authoritarian”
spectrum of opinions. In such a case the happiness of an agent with a particular
alternative can simply correspond to the distance between them in this space, which
represents how close their views are to each other. More generally, both agents and
alternatives can be points in a very high-dimensional space (for example a space
in which each dimension is a different political issue), with ci(a) still being the
distance between i and a in this space, or maybe some simple increasing function of
this distance. Given such explicit numerical costs, we can define the truly optimal
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alternative as the one which minimizes
∑
i ci(a) (or some other reasonable objective

function); this is in contrast to the case when there are no numerical costs and no
clear optimal alternative may exist.

Now, if our goal is to find this optimal candidate, and we have access to all the
numerical ci(a) values, then this problem is trivial. In many social choice settings,
however, while it may be reasonable to assume some underlying utility structure on
the preferences, it is often unreasonable to assume that we know these numerical
values exactly; it is much more likely that we only know the preference ordering over
the candidates for each voter. In other words, we only know the ordinal preferences
for each agent i over alternatives in A; we do not know the actual values ci(a) and
thus the strength of agent i’s preferences.1 This can be true because the ordering
is much easier to specify than numerical values; in fact agents i themselves may
not know their exact utility or cost values, but can still make pairwise comparisons
between alternatives. Given only this limited ordinal information, we still want
to choose a good candidate, i.e., one that has small

∑
i ci(a) compared to the

optimal one. This requires an approximation algorithm: one that is limited not
by its computational power (or at least not only by its computational power), but
is instead limited by only knowing ordinal information, while trying to compete
with the optimum solution according to the true numerical information. Perhaps
surprisingly, one can often create such algorithms with approximation guarantees
of a small constant, without knowing anything about the underlying values ci(a)
other than the ordinal preferences they result in, and the fact that these values
form an arbitrary metric.

In this letter we describe some approaches to forming and analyzing such ordinal
approximation algorithms, for both the social choice setting and other settings such
as matching and clustering. We will focus specifically on the case when the under-
lying numerical costs (or utilities) form a metric space. It is worth noting that this
is not the only type of correlation between the numerical costs which can lead to
interesting results. Specifically, several works consider the case when these costs
are non-metric, but are normalized, e.g., assuming for example that the largest cost
is always equal to 1 for each participant. In this setting, [Caragiannis et al. 2016;
Boutilier et al. 2012; Procaccia and Rosenschein 2006] analyze the quality of various
social choice mechanisms, and [Filos-Ratsikas et al. 2014] analyze mechanisms for
one-sided matching.

2. DISTORTION OF SOCIAL CHOICE MECHANISMS

As discussed above, in our setting one can think of a social choice mechanism as
an approximation algorithm which attempts to choose the best possible alternative
(maximize social welfare or minimize social cost), but only has access to limited
information (ordinal preferences induced by the underlying costs ci instead of the
actual numerical costs ci). To denote the approximation factor of a social choice
mechanism, [Procaccia and Rosenschein 2006] introduced the term distortion which

1Another important concern is the truthfulness of the voters in reporting their preferences; while

e.g., [Filos-Ratsikas et al. 2014; Feldman et al. 2015] consider truthful mechanisms with only

ordinal knowledge, in this letter we focus on the issues arising from ordinal knowledge as opposed
to the ones arising from strategic voting.
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we will continue to use in this letter (the definition below is slightly different from
the one in [Procaccia and Rosenschein 2006]; for more about distortion see [Boutilier
and Rosenschein 2016]). Formally, the distortion of an alternative a ∈ A for given
ordinal preference profiles σi for each i ∈ N is

max
ci∈C(σi),∀i

[ ∑
i ci(a)

minb∈A
∑
i ci(b)

]
,

where C(σi) is the set of all numerical cost functions consistent with preferences
σi. In other words, the distortion of an alternative is an upper bound on how bad
this alternative can be compared to the optimum one, no matter what the true
underlying costs ci actually are. As is common with approximation algorithms of
other types, the distortion of a social choice mechanism is then defined to be the
worst-case ratio of the social cost of the alternative selected by the mechanism,
compared to the cost of the optimal alternative.

To understand how well mechanisms which only know ordinal information can
perform compared to mechanisms which know the underlying numerical informa-
tion, let us first consider the extremely simple setting of |A| = 2 alternatives. Call
these alternatives a and b, and suppose that k voters prefer a to b, and n−k voters
prefer b to a (let’s assume that no ties are possible). Even if only a single voter
prefers a to b, it is still possible that a is the alternative which minimizes social
cost: for example the cost of this voter for a could be 0, while the other n − 1
voters only slightly prefer b to a, and are essentially indifferent. Therefore, it is
impossible to determine the true optimum alternative based on only ordinal infor-
mation. Consider, however, the obvious mechanism in which we choose a if and
only if k ≥ n/2. It is not difficult to show that the distortion of this mechanism
is at most 3: the worst case has k voters being in the middle between a and b
in our metric space, and n − k voters being exactly on top of b (i.e., ci(b) = 0),
which leads to a ratio of at most 3 between the total cost of a and the total cost of
b. Therefore, without knowing anything about the true costs ci except that they
form an arbitrary metric space, and that the ordinal preferences are induced by
these costs, we are able to always choose an alternative which is within a factor of
3 away from the optimum alternative. It is also easy to see that the same example
guarantees that no deterministic mechanism can have worst-case distortion better
than 3.

In [Anshelevich et al. 2015], we consider many common social choice mechanisms
for this setting, and quantify their worst-case distortion. For common positional
scoring rules such as plurality, Borda, k-approval, and veto, we prove that the worst
case distortion can be high: either 2m− 1 or 2n− 1 where m is the number of al-
ternatives and n is the number of agents/voters. For the Copeland social choice
rule, however, we prove that the distortion is always at most 5. This means that,
although the Copeland social choice mechanism knows nothing about the metric
costs other than the ordinal preferences induced by them, and cannot possibly find
the true optimal alternative, it nevertheless always selects an alternative whose
quality is only a factor of 5 away from optimal! Moreover, due to our lower bound,
no deterministic mechanism can do much better than Copeland for the sum ob-
jective, because the distortion lower bound for any deterministic mechanism is 3.
In [Anshelevich and Postl 2016], we expand our search to randomized mechanisms,
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and establish tight bounds on their expected distortion. It is not difficult to show
that randomized dictatorship has expected distortion strictly better than 3, and
thus better than any deterministic mechanism. We also consider specific cases such
as the 1-Euclidean metric setting (see for example [Elkind and Faliszewski 2014]
and [Procaccia and Tennenholtz 2009]), and give randomized mechanisms which
are either optimal or close-to-optimal with respect to their expected distortion.
Recently, [Feldman et al. 2015] also considered the distortion of randomized social
choice functions: they specifically focus on truthful mechanisms (i.e., the “strategic”
setting), and give an extremely interesting truthful mechanism for the 1-Euclidean
case with distortion of 2.

In addition to the sum objective function which defines the social cost of an
alternative as the sum of all agent costs for that alternative, we also consider the
median objective: the cost of an alternative is the median of agent costs for that
alternative. This captures the objective that the best alternative is the one in which
the cost of the median voter is minimized, instead of the average voter. Here the
results are even nicer: no deterministic mechanism can always have distortion better
than 5, and Copeland achieves this bound exactly [Anshelevich et al. 2015]. If we
allow randomized mechanisms, then a more complex mechanism can be shown to
have expected distortion of at most 4; the lower bound for randomized mechanisms
with the median objective becomes 3, however, so better mechanisms may still be
possible [Anshelevich and Postl 2016].

3. BEYOND SOCIAL CHOICE: ORDINAL APPROXIMATION FORMATCHING AND
CLUSTERING

The questions and techniques described above go far beyond social choice. In match-
ing settings, it is natural to suppose that the participating agents have underlying
numerical valuations for who they want to be matched with, but the algorithm
forming the assignment is only aware of ordinal information. Works such as [Filos-
Ratsikas et al. 2014] and [Anshelevich and Sekar 2016] analyze such settings; for
example [Anshelevich and Sekar 2016] defines a 1.6-approximation algorithm for
the maximum-weight metric matching problem in the presence of only ordinal in-
formation. This algorithm uses a mix of greedy and random matchings in order
to form matchings with provably high quality. More generally, other graph and
clustering problems allow good approximations based only on ordinal information;
[Anshelevich and Sekar 2015] provides such approximations for Max k-sum, Densest
k-subgraph, and Maximum Traveling Salesman problems.

4. CONCLUSION

In this note we discussed algorithms which only have access to ordinal information,
and yet perform almost as well as algorithms with access to the full numerical
information. This work, and hopefully future work on this topic, adds to the basic
understanding of the fundamental power of ordinal information, by determining
under which settings and conditions ordinal information is enough to approximate
the numerical truth, and when such approximations are impossible. More generally,
the same questions can be asked for other types of limited information: how much
information about the true input is enough to produce good results?
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