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We study dynamic pricing policies for ridesharing platforms such as Lyft and Uber. On one hand
these platforms are two-sided: this requires economic models that capture the incentives of both
drivers and passengers. On the other hand, these platforms support high temporal-resolution for
data collection and pricing: this requires stochastic models that capture the dynamics of drivers
and passengers in the system.

We summarize our main results from [Banerjee et al. 2015], in which we study the role of
dynamic pricing in ridesharing platforms using a queueing-theoretic economic model. We build
a model of two-sided ridesharing platforms that captures both the stochastic dynamics of the
marketplace and the strategic decisions of drivers, passengers and the platform. We show how our
model can help explain the success of dynamic pricing in practice: in particular, we argue that
the benefit of dynamic pricing over static pricing is not in the optimal performance, but rather,
in the robustness of its performance to uncertainty in system parameters.
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1. INTRODUCTION

In this letter, we study pricing in ridesharing platforms such as Lyft and Uber. We
present a summary of our main results and insights from [Banerjee et al. 2015], and
refer interested readers to our full paper for more details.

Since their founding in the last several years, ridesharing platforms have expe-
rienced extraordinary growth. At their core, the platforms reduce the friction in
matching and dispatch for transportation. A typical transaction on these platforms
is as follows: a potential rider opens the app on her phone and requests a ride, and
the system matches her to a nearby driver if one is available. There are three
key features that make ridesharing platforms unique, and motivate our model and
research questions:

(1) Ridesharing platforms typically do not employ drivers, but rather, create a
marketplace between passengers and freelance drivers. Drivers can choose when
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and where to work (or not), and earn a share of the earnings per ride.

(2) An important reason behind the success of ridesharing apps is the minimal
friction experienced by passengers in requesting a ride. Critical to this is a
design choice made by most platforms wherein matches and prices are deter-
mined exclusively by the platform. This is in contrast to many other two-sided
marketplaces, where the price of a transaction typically arises via some form of
negotiation between agents.

(3) An important role of platform intermediation is thus to control prices to cali-
brate supply and demand relative to each other, while ensuring relatively high
satisfaction to both sides. The key tool available to the platform for this pur-
pose is dynamic pricing: the platform can adjust ride prices in real-time, to
react to changes in ride requests and available drivers.

Both Lyft and Uber have used dynamic pricing policies (referred to as ‘Primetime
Pricing’ in Lyft and ‘Surge Pricing’ in Uber) for several years. The main contribu-
tion of our work in [Banerjee et al. 2015] is in developing a theoretical framework
that captures these three features of ridesharing platforms: their two-sided nature,
the strategic reaction of market participants to marketplace policies, and the ability
of the platform to price based on real-time state. In this letter, we briefly describe
our model, and our findings on how dynamic pricing influences the performance
of ridesharing platforms. We conclude by placing our research in the context of
related work, and point out some interesting avenues for future research.

2. A MODEL FOR RIDESHARING PLATFORMS

At a high level, our model is based on combining a stochastic model for the dynamics
of riders and passengers on the platform, with an equilibrium analysis that captures
incentives of both drivers and passengers as well as the objectives of the platform.

To capture the fast-timescale dynamics of ridesharing platforms, we employ a
queueing theoretic model. In particular, we consider a geographic area divided into
regions, and track a Markov chain that tracks the number of available and busy
drivers in each region. Each ride involves a driver picking up a passenger in one
region, and dropping her off in another. For simplicity, we analyze this model first
for a single region; classical tools from the theory of reversible queueing networks
[Kelly 1979] let us generalize some of our results to networks of regions.

Key to our model is the assumption that there is an intrinsic timescale separation
in the strategic interaction of drivers and passengers. This is based on the observa-
tion that passengers are typically sensitive to the immediate availability and price
at the moment when they need a ride, while drivers are typically sensitive to the
average wages earned over a longer period of time (days or weeks), and adjust their
activity levels based on their assessment of earnings during the last week '. We note
that our model does not consider longer-term passenger interactions, for example,
demand screening due to persistent low availability or high prices. Understanding
the impact of this is an interesting follow-up question.

We illustrate our single-region model in Fig. 1. The main object of study is a
birth-death chain that tracks the number of available drivers. From the passengers’

1The drivers are aided in this by information provided by the platforms of their weekly perfor-
mance, as well as the typical earnings of drivers at different times and locations.
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Fig. 1. Queueing model for ridesharing platform: Figure 1(a) shows the birth-death
chain for the number of available drivers in a region. In particular, we have shown
a single-threshold pricing policy, where the platform uses a ‘base’ fare-multiplier p,
when the number of drivers is greater than a threshold 0, else charges a ‘primetime’
price-multiplier pp, > pg (hence the queue drains slower when there are < 0 drivers).
Figure 1(b) shows the flow of drivers in the network: exogenous drivers arrive to
the platform at an (equilibrium) rate A and join the available-drivers queue; when
matched with a passenger, they transition to a busy-drivers queue; after completing
a ride, they either exit the platform, or return to the available-drivers queue.

viewpoint, we consider a loss system, where passengers arrive (i.e., open their apps)
at a rate ug, and each incoming passenger either requests a ride (depending on
availability and price), or immediately exits the system. Specifically, each passenger
has a private value drawn i.i.d. from a distribution Fy,, and requests a ride only if a
driver is available, and the price quoted is lower than their value. 2 In contrast, we
assume that drivers’ entry decisions are made by comparing their expected lifetime
earnings with their expected lifetime (i.e., total time spent in waiting for and giving
rides); if this wage rate exceeds a driver-specific reservation rate (drawn i.i.d. from
distribution F¢), then the driver chooses to join the platform. The price for a ride
P(A) can be dynamically adjusted by the platform based on the current number
of available drivers A. Finally, we assume that a fraction « of the price goes to the
driver, while the remaining is kept by the platform.

The pricing policy, along with the demand and supply functions together deter-
mine an equilibrium arrival rate of driver-arrivals A and passenger arrivals p(A),
as well as system throughput and revenue. Suppose the maximum potential rate
of exogenous driver-arrivals is Ag. Based on the above discussion, the equilibrium
rates of passenger requests and exogenous driver-arrivals must satisfy:

W) = o= Fe(PA) o X =Mt = AoFio ().

where 77 denotes the expected per-ride earnings, ¢ the expected waiting time for a
driver between rides, and 7 the expected ride time. Exact expressions for these can
be computed from standard Markov chain theory; note though that n and ¢ depend
on A and p, as well as the pricing policy P(A). Details of these computations, and
of the existence/uniqueness of the equilibrium, are given in [Banerjee et al. 2015].

2In reality, passengers are typically shown the nearest driver, and the request decision is a joint
function of the price and pickup time. Our model focusses on the effect of the price, and uses
unavailability as a proxy for passenger loss due to long pickup times. Understanding the effect of
pickup times is an important question, but outside the scope of our model.
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3. A SUMMARY OF OUR RESULTS

Given the above model of a ridesharing platform, we focus on studying two pricing
policies: (i) static pricing, where the price is fixed as a function of mean system
parameters, but not instantaneous state ), and (ii) threshold dynamic pricing poli-
cies, where the platform raises the price whenever the number of available drivers
in a region falls below a threshold.
The Large-Market Scaling: One technical problem is that our model does not
admit a closed-form expression for the equilibrium driver/passenger arrival rates,
which are necessary for designing optimal pricing policies. To circumvent this, we
consider the system under a large-market scaling. Formally, we consider a sequence
of systems parametrized by n, wherein Ag(n) = Agn and pg(n) = pen, and all other
parameters (7, Gezit, Y, Fo, Fyv), as well as the price p, are held fixed. We then let
n approach oo, and study the normalized equilibrium state, i.e. lim,_, A(n)/n, of
the limiting system. For dynamic pricing policies, in addition to scaling Ay and pq,
we keep the price vector fixed, but allow the threshold §(n) to scale with n.
Under the large-market scaling, we are able to characterize the equilibrium rates
for the limiting system in closed form, for both static and dynamic pricing. This can
be seen graphically in Fig. 2(a), where we have plotted the normalized equilibrium
throughput (i.e., rate of rides) vs. static price p (the green curves), and also, for a
class of dynamic pricing policies (the maroon curves) where we keep one price fixed
at 1.75 (the red vertical dotted line). The dotted curves are numerically computed
for n € {1,10,100,1000}, and can be seen to be monotonically converging up to
the solid curves, which plot our theoretical large-market limits.
Optimal Performance of Pricing Policies: One surprising aspect of Fig. 2(a)
is that the optimal throughput in the large-market limit over the dynamic pricing
policies we consider appears to coincide with that obtained under static pricing.
This however turns out to hold for all threshold dynamic pricing policies under
fairly weak conditions; in [Banerjee et al. 2015], we prove the following:

THEOREM 3.1. Given (Ao, o, Y, Gexit, T) and continuous distributions Fo, Fy .
Suppose Fy has an increasing hazard rate. Then the optimal normalized throughput
in the large-market limit under dynamic pricing collapses to that obtained under the
optimal static pricing policy.

In other words, the platform cannot increase throughput by employing dynamic pric-
ing. Similar results hold for revenue, and also for multi-threshold pricing policies.

Note though that dynamic pricing does better than static pricing in the pre-limit,
which is unsurprising as it includes static pricing as a special case. The non-trivial
aspect is that the difference in performance vanishes in the limit. Note also that the
performance of a dynamic pricing policy with prices (p¢, pr) is not identical to the
performance with static price p; or p,, (in particular, in the regime py < ppar < Ph,
where pyq; is the balance price under static pricing). This indicates that passengers
experience both prices in the large-market limit (in fact, it can be shown that in
the limit, passengers sample between the two prices in an i.i.d. manner).

3More specifically, we consider quasi-static policies, where the price remains fixed for blocks of
time on the order of hours, but can be changed over slower timescales to reflect change in average
demand/supply. Such policies were common before the rise of Lyft and Uber.
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Fig. 2. Static vs. dynamic pricing in ridesharing platforms: Figure 2(a) depicts the
normalized equilibrium throughput in a ridesharing platform under static pricing
(in green), and under dynamic pricing (in maroon) with one price fized at 1.75 (the
red vertical dotted line). The dotted lines show the throughput curve for different
values of the market-scaling parameter n, with higher curves corresponding to higher
values of n. The solid curves plot our theoretical large-market limits. Note that
in the large-market limit, the optimal throughput under both policies is the same
(indicated by the black vertical dotted line). Figure 2(b) demonstrates the sensitivity
of static and dynamic pricing to demand uncertainty: For a fixed Ao, we consider
o € 4+ 10%, and compare the normalized throughput under (i) the optimal static
policy with oy = 4 (indicated by the black vertical dotted line), and (ii) the dynamic-
pricing policy which sets py based on g = 3.6, and py, based on pg = 4.4 (indicated
by the red vertical dotted lines). The dashed green curve shows the performance of
the optimal static-pricing corresponding to the actual .

Robustness of Pricing Policies: Theorem 3.1 is counterintuitive, and belies the
success of dynamic pricing in practice on ridesharing platforms. Our second main
result reveals a significant benefit that dynamic pricing holds over static pricing:
robustness. Specifically, suppose the system operator chooses the optimal threshold
dynamic (resp., static) pricing policy assuming system parameters Ag, po. Now if
the true parameters deviate from the assumed parameters, we show that dynamic
pricing maintains a much higher share of the optimal throughput relative to the
optimal static pricing. This property is graphically depicted in Fig. 2(b); refer to
[Banerjee et al. 2015] for a formal geometrical characterization.

4. DISCUSSION AND RELATED WORK

Our work sits at the intersection of research in economics on two-sided market-
places, and stochastic modeling approaches arising from the revenue management
and queueing literatures. Combining both approaches is essential to investigating
the role of dynamic pricing (and more generally, other dynamic mechanisms) in
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two-sided platforms. Moreover, the interaction of the two drives our main conclu-
sion: that dynamic pricing is not fundamentally better than static pricing in terms
of performance, but rather, its utility lies in helping discover the ‘correct’ static
price, by stochastically mixing between higher prices (in low supply conditions)
and lower prices (when there is low demand).

From an economics standpoint, our paper is in the spirit of the literature on
the price theory of two-sided platforms [Rochet and Tirole 2003], [Weyl 2010].
This line of work typically studies the design two-sided markets under exogenously
specified utility functions for agents. Our approach instead is to build up the
market model from microfoundations; moreover, having a dynamic model allows us
to study dynamic pricing, which is not possible in the standard economic models
of two-sided platforms.

The question of static vs. dynamic pricing is widely studied in the revenue
management literature [Talluri and Van Ryzin 2006]. In particular, our results are
very similar in spirit to those in the seminal work of [Gallego and Van Ryzin 1994]
on dynamic pricing based on current inventory levels. However, while the primary
concern of revenue management is monopolist pricing in a one-sided platform, our
focus is on the equilibrium effects of pricing policies in a two-sided marketplace.

From a technical perspective, our work adapts classical queueing-network models
[Kelly 1979] to settings with matching constraints and strategic agent behavior,
and uses a large-market scaling approach to derive tractable analysis and insights.
There is a long line of work on strategic queueing models for single-queue settings
with a fixed number of servers, and strategic customers; see [Hassin and Haviv
2003] for a good overview. More recent work has led to tractable models for more
general matching queues [Adan and Weiss 2012], as well as simplified fluid models
of service systems with strategic servers [Gurvich et al. 2014]. Large-market scaling
techniques have also grown in importance in recent years; see [Kojima and Pathak
2009] for an example applying this to matching markets.
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