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In this letter, we discuss the correlation-robust framework proposed by Carroll [Econometrica 2017]

and our new development [SODA 2018]. Consider a monopolist seller that has n heterogeneous
items to sell to a single buyer with the objective of maximizing the seller’s revenue. In the

correlation-robust framework, the seller only knows marginal distribution of each item but has no
information about the correlation across different items in the joint distribution. Any mechanism is

then evaluated according to its expected profit in the worst-case over all possible joint distributions

with the given marginal distributions. Carroll’s main result states that when the buyer’s value for
any set of her items is the sum of the values of individual items in the set, the optimal correlation-

robust mechanism should sell items separately. We extend this result to the case where the

buyer has a budget constraint on her total payment. Namely, we show that the optimal robust
mechanism splits the total budget in a fixed way across different items independent of the bids,

and then sells each item separately with a per item budget constraint.

We highlight an alternative approach via a dual Linear Programming formulation for the op-
timal correlation-robust mechanism design problem. This LP can be used to compute optimal

mechanisms in general (other than additive) settings. It also yields an alternative proof for the

additive monopoly problem without constructing the worst-case distribution and allows us to
extend the proof to the budget setting.

Categories and Subject Descriptors: F.0 [Theory of Computation]: ANALYSIS OF ALGO-

RITHMS AND PROBLEM COMPLEXITY

1. INTRODUCTION

In the problem of monopolist revenue maximization, a seller has n heterogeneous
items to sell to a single buyer. The monopolist has a prior belief about the dis-
tribution of buyer’s values and wants to sell the goods so as to maximize her ex-
pected revenue. In the case of a single item (n = 1) with the value drawn from
a distribution F the optimal solution [Myerson 1981] is straightforward: the seller
offers a fixed take-it-or-leave-it price p chosen to maximize the expected payment
p · (1− F (p)). As an example of the multidimensional problem let us consider the
most basic and widely studied version, where the buyer’s value for a set of items
is additive. This easy-to-state problem, despite the simplicity of its solution in the
single-item case, often leads to complex and unwieldy solutions.

The problem of finding the right auction format and proving its optimality is
quite difficult even in the case of two items (n = 2). The monopolist may use quite
a few selling strategies: she may sell items independently by posting a separate
price for each of the two items, or offer a bundle of both goods, at yet another
price. In general, the seller can offer a menu with many options that may involve
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lotteries with probabilistic outcomes, e.g., a 0.6 chance of getting the first item and
0.4 chance of getting the second, for some price. In some special cases the opti-
mal mechanism is relatively simple, e.g., in the natural case of values for different
goods being drawn from [0, 1] independently and uniformly at random, the optimal
mechanism offers a menu with separate prices for each of the items and a price for
the bundle (the proof of this seemingly simple fact is quite nontrivial [Manelli and
Vincent 2007].) For general distributions it has been shown that randomization
might be necessary and even that the seller might have to offer an infinite menu of
lotteries [Hart and Nisan 2013; Daskalakis et al. 2014]. As another indication of the
problem’s complexity, the revenue of the optimal auction may decrease [Hart and
Reny 2015] when the buyer’s values in the prior distribution are moved upwards (in
the stochastic dominance sense). These issues not only appear when values for two
or more items are correlated, but also when they are independently distributed.

To avoid the aforementioned complications Carroll [Carroll 2017] has recently
proposed a new framework for the multidimensional monopolist problem1 for an
additive buyer. In this framework the seller knows the prior distribution of types
vi ∼ Fi for each individual item i ∈ [n]. However, unlike the traditional approach,
in which the seller maximizes the expected payment with respect to a given prior
distribution D over the complete type profiles v = (v1, · · · , vn), in the new frame-
work the seller does not know the correlation of types across different items. Any
mechanism then is evaluated according to its expected profit in the worst case, over
all possible joint distributions with the given marginal distributions {Fi}ni=1 of each
item i ∈ [n]. In other words, the seller wants to get a guarantee on the expected
profit of a mechanism which is robust to any correlation across items. Although,
Carroll’s model is formulated for a buyer with additively separable valuation, the
framework easily extends to other more general mechanism design settings, e.g.,
settings with multiple buyers, or settings where the buyers are unit-demand (i.e.,
each buyer does not want more than one item), or have budget constraints.

There are standard pros and cons of worst-case versus average-case analysis
frameworks in computer science, which also apply here. Beyond those, there are
specific points that we shall discuss below.

(1) The underlying assumption of the Bayesian framework is that the joint prior
distribution is already known to the seller. There is serious practical concern re-
garding learning correlated multidimensional distributions: the representation
and sampling complexity of this problem is exponential in the dimension (i.e.,
number of items). Another challenge in learning the prior distribution arises
as a result of strategic behavior of the buyer, who does not usually report his
type but responds to the seller’s offer in each single interaction and might want
to conceal data in order to gain from his interaction with the seller in the fu-
ture. In this respect, learning information about separate marginals is much a
simpler econometrics task that does not suffer from the curse of dimensionality.

(2) It is standard in the literature to assume that the prior distribution is in-
dependent across items. In this case it is expected that one can get better

1Carroll considered a more general setting of multidimensional screening with additively separable
payoff structure.
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revenue guarantees than in the worst-case framework. However, in practice,
the independence assumption does not always hold and even verifying it (in
the property testing sense) is a non trivial statistical task. The studies of cor-
related priors are scarce but not uncommon in the literature, both for the cases
of positively or negatively correlated distributions, see e.g. [Levin 1997; Tang
and Wang 2016; Bateni et al. 2015]. The case of correlated distribution is sig-
nificantly more challenging than the case of independent priors. In this respect,
correlation-robust framework offers an alternative tractable model of studying
the unwieldy case of possibly correlated prior distributions.

(3) Even with independent prior distributions the optimal mechanism can be very
complex and as such is not employed in practice. A recent line of work studies
the monopolist problem in the simple versus optimal framework [Hartline and
Roughgarden 2009] and obtained a few interesting approximation guarantees.
In the case of additive buyer, Babaioff et. al. [Babaioff et al. 2014] showed that
simple mechanism of selling items either separately or together in one grand
bundle gives a constant-factor approximation to the optimal revenue. A recent
work by Cai et al. [Cai et al. 2016] provided a unified view on some of the above
“simple versus optimal” results by an LP duality based approach of generalized
virtual values. In the worst-case framework, Carroll has shown that the optimal
correlation-robust mechanism is to sell items separately, without any bundling.
His result compliments the result of [Babaioff et al. 2014] by adding a valuable
counterpoint to the algorithmic mechanism design literature, as Carroll puts
it, “If you don’t know enough to see how to bundle, then don’t.”

(4) The prior distribution usually represents a belief of the seller about the buyer’s
types, but not the exact distribution. As such the prior might not accurately
capture the actual distribution and thus some robustness guarantees and in-
sensitivity to the precise data can be useful. The new framework addresses the
issue of possible correlation among different type components. Furthermore, it
seems to offer a more tractable way to analyze other robustness issues, such as
mistakes in the beliefs about marginal distributions.

To conclude, the new framework complements and adds a few valuable points
to the literature on the monopolist problem. Specifically, it seems quite natural to
examine this framework from a computational perspective.

The computational problem in the correlation-robust framework can be described
with n distributions {Fi}ni=1, each Fi given by |Vi| parameters, where Vi is the
support of Fi. The goal is to find a truthful mechanism with the best revenue
guarantee over all possible joint distributions D with specified marginals {Fi}ni=1.
We know from Carroll’s work what the optimal solution is for the case of additive
buyer. However, for other versions of the problem (e.g., for unit-demand) the
structure of the optimal mechanism is unclear and it is natural to ask the question
of computing the optimal mechanism. This problem has a succinct description in
contrast with the traditional computational Bayesian framework [Cai et al. 2012b;
2012a; 2013], where the input (distribution D of types v = (v1, . . . , vn)) may be
exponential in the number of items2.

2To make the computational problem reasonable some assumptions about polynomial number of

ACM SIGecom Exchanges, Vol. 16, No. 2, June 2018, Pages 45–52



48 · N. Gravin and P. Lu

2. THE MODEL

We consider a canonical multidimensional auction environment where one agent is
selling n heterogeneous items to a single buyer. This environment can be specified
by an allocation space X, which is assumed to be a convex set in [0, 1]n (we assume
that the agent is risk-neutral and his value extends to any convex combination of
feasible allocations x ∈ X); type space V =

∏n
i=1 Vi, Vi ⊆ R≥0 and a value function

val : X ×V → R≥0. We use v = (v1, v2, · · · , vn) ∈ V to denote a multidimensional
type of the agent. When the buyer has additive valuation, we have val(v, x) =
〈v, x〉 =

∑n
i=1 vi · xi. We employ standard formulation of incentive compatible

(a.k.a. truthful) mechanism as a pair of allocation x : V → X and payment p : V →
R≥0 functions satisfying incentive compatibility (IC) and individual rationality (IR)
constraints for quasi-linear utility u(v, v̂).

u(v, v̂)
def
= val(v, x(v̂))− p(v̂) ≤ u(v,v) = val(v, x(v))− p(v) for all v, v̂ ∈ V (IC).

u(v,v) = val(v, x(v))− p(v) ≥ 0 for all v ∈ V (IR).

A mechanism is budget feasible if the agent’s payment to the seller is bounded
by a budget B, i.e., p(v) ≤ B for all v ∈ V . The agent derives utility of −∞ when
p(v) > B and the same quasi-linear utility of val(v, x(v)) − p(v), when p(v) ≤ B.
We assume that the agent’s budget B is public, i.e., the budget B is known to the
auctioneer3.

The type v is drawn from a joint distribution D, which is not completely known
to the auctioneer and which may admit correlation among different components
of v. The auctioneer only knows marginal distributions Fi of D for each separate
component i but does not know how these components are correlated with each
other. We assume that every distribution Fi is discrete and has finite support4

Vi. We use fi to denote the probability density function of the distribution Fi. We
also slightly abuse notations and use Fi to denote the respective cumulative density
function. The joint support of all Fi is V = ×ni=1Vi. We use Π to denote all possible
distributions π supported on V that are consistent with the marginal distributions
F1, F2, · · · , Fn, i.e., Π =

{
π |
∑

v-i
π(vi,v-i) = fi(vi), ∀i ∈ [n], vi ∈ Vi

}
. The goal

is to design a truthful mechanism that maximizes the auctioneer’s expected revenue
in the worst case with respect to the unknown joint distribution D. Formally, we
want to find a truthful (budget feasible) mechanism (x∗, p∗) such that

(x∗, p∗) ∈ argmax
(x,p)

min
π(x,p)
π∈Π

∑
v∈V

π(v)p(v). (1)

3. LP FORMULATION

We begin by looking at equation (1) as a zero-sum game played between the auction
designer and an adversary, who gets to pick a distribution π with given marginals
F1, · · · , Fn and whose objective is to minimize the auctioneer’s revenue. We note

types in the support of D usually are made.
3We note that optimal auction problem in a private budget setting is quite complex even in the

single-item case. Thus the public budget assumption is indeed necessary if our goal is to find

settings with simple optimal auctions.
4Similar to [Carroll 2017] our results extend to the distributions with continuous type distributions.
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that the strategy space of the auctioneer, i.e., the set of truthful mechanisms given
by x : V → X and p : V → R≥0, is convex (because a random mixture of truthful
mechanisms is a truthful mechanism itself) and is compact5. Similarly the strategy
space Π of the adversary (distribution player) is also a compact convex set. Thus
the sets of both players’ mixed strategies coincide with their respective sets of pure
strategies. Now, our two-player game admits at least one mixed Nash equilibrium6,
which is also a pure Nash equilibrium: M∗ = (x∗, p∗) for the auctioneer player and
π∗ for the adversary. This Nash equilibrium defines a unique value of a zero sum
game and, therefore, yields a solution to minmax problem (1).

We restrict our attention to the minimization problem of the distribution player
for any fixed truthful mechanism M = (x, p):

min
π∈Π

∑
v

p(v) · π(v). (2)

Note that this is a linear program, since Π is given by a set of linear inequalities.
We also write a corresponding dual problem.

min
∑
v

p(v) · π(v) max
n∑
i=1

∑
vi

fi(vi) · λi(vi) (3)

s. t.
∑
v-i

π(vi,v-i) = fi(vi) dual var. λi(vi) s. t.

n∑
i=1

λi(vi) ≤ p(v) ∀v

π(v) ≥ 0 λi(vi) ∈ R

The value of the primal LP 3 is worst-case revenue Rev(M) of the mechanism
M = (x, p). Intuitively, the dual LP (3) captures the best additive approximation of
the payment function p(v) ofM with {λi(vi), vi ∈ Vi}ni=1. The values of the primal
and dual problems (3) are equal for any fixed truthful mechanismM = (x, p). This
allows us to convert the maxmin problem (1) to a maximization LP problem:

max

n∑
i=1

∑
vi

fi(vi) · λi(vi) (4)

s. t.

n∑
i=1

λi(vi) ≤ p(v) ∀v; (x, p) : (IC),(IR); x(v) ∈ X.

One can solve LP (4) with standard polynomial time techniques to get an optimal
auction in a variety of settings. For example we can compute optimal auctions
when the buyer has additive, unit-demand, budget additive, or other valuations
which allows succinct LP description of X. However, the optimal solution to these

5Indeed, as there are only finite number of types, one can think of a pair of allocation x and
payment p functions as |V | vectors in X and |V | real numbers in R≥0. Thus we get a natural

notion of convergence and distance for the mechanisms. As the set of truthful mechanisms is

described by a finite set of not strict IC and IR inequalities, we conclude that truthful mechanisms
form a closed set. Note that allocation domain is compact and payment function of a truthful
mechanism is bounded by a constant, which makes the set of truthful mechanisms to be bounded

as well. Therefore, it is compact.
6by Glicksberg Theorem for continues games
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problems would normally require descriptions of length proportional to the size of
the type domain |V | =

∏n
i=1 |Vi|, which makes it not efficient for problems with

a large number of items. Thus a next most natural question is to find special
classes of problems that admit succinct and simple auctions in the correlation-
robust framework.

4. RESULTS AND PROOF OUTLINE

Let us denote by Rev(Fi, Bi) the optimal revenue of a single-item auction that can
be extracted from a single agent with value distribution Fi and a public budget Bi.
We propose the following straightforward format of budget feasible mechanisms:
split the budget B =

∑n
i=1Bi across all items {Bi}ni=1; independently for each

item i run an optimal single-item auction with the revenue Rev(Fi, Bi).We call this
class of budget feasible mechanisms item-budgets mechanisms. We note that this
is fairly large class of mechanisms, as there are many ways in which the budget B
can be split over the different items. We use Rev({Fi}ni=1, B) to denote

max

n∑
i=1

Rev(Fi, Bi), s.t.

n∑
i=1

Bi ≤ B.

The solution to this problem gives us the expected revenue of the the optimal item-
budgets mechanism. Our main result from [Gravin and Lu ] says that the optimal
correlation-robust mechanism is in fact an item-budgets mechanism.

Theorem 4.1. The optimal correlation-robust mechanism has the revenue of
Rev({Fi}ni=1, B).

Proof Outline. We assume towards a contradiction that there is a mechanism
M with higher revenue. Then we fixM and consider the variables {λi(vi)}i∈[n],vi∈Vi

in the dual LP (4), which give an additive approximation (lower bound) on the
payment function of M. It is natural to interpret {λi(vi)}vi∈Vi

as prices for each
separate item i ∈ [n]. However, we need to deal with the problem that variables
{λi(vi)} can be negative. To this end, we can find a smaller counter example (a

mechanismM′ and set of variables
{
λ

′

i(vi)
}
i∈[n],vi∈V

′
i

with a smaller domain V ′ ⊂

V ), such that λ
′

i(vi) are non-negative and monotonically increasing for each i ∈ [n].
We construct an item-budgets mechanism such that its payment function is point-
wise dominated (strictly upper bounded) by

∑
i∈[n] λ

′

i(vi) and by the constraints

of the dual LP (3) is also point-wise dominated by the payment function of M′.
Finally, we get a contradiction by combining certain tight IC and IR constraints
for the item-budgets mechanism that together yield an upper bound on a weighted
sum of the payments of M′.

5. OPEN PROBLEMS

Correlation-robust approach offers a new optimization framework for design and
analysis of mechanisms. It addresses some reasonable practical concerns and also
brings closer Bayesian and worst-case frameworks in algorithmic mechanism design
literature. The results in Carroll’s paper and ours seem to be only initial steps in
this framework and there are multiple open avenues for future work. Here, we list a
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few interesting directions. We believe that the LP formulation approach developed
in this paper may find its applications as a useful initial step in the future work on
this topic.

Beyond additive valuations. All current work on the topic has assumed the buyer
to have additive valuations. It is an intriguing research direction to investigate other
types of valuations. It is particularly interesting to understand optimal correlation-
robust auctions for another class of simple unit-demand valuations. It is not clear
if the optimal mechanism will have to use lotteries as sometimes is required in
the Bayesian framework with independent values. Another natural simple class of
valuations to study is the class of budget additive buyer’s valuations.

Multiple buyers. In the monopolist problem we have only one buyer. It is an
important research direction to extend the correlation-robust framework to the case
of multiple buyers. Two possible extensions include (i) a model where the worst-case
distributions for different buyers are independent (ii) the distributions for different
buyers can be correlated and the performance of a mechanism is measured in the
worst-case over this correlation. We believe that both extensions are reasonable
and deserve further investigation.

Computational complexity. Our LP formulation for the optimal correlation-robust
auction has Ω(

∏n
i=1 |Vi|) variables, which has exponential dependency on the input

size
∑n
i=1 |Vi|. When can we describe7 the optimal auction succinctly, i.e., find a

polynomial in the input size representation? We know that for an additive buyer,
and also for an additive buyer with budget constraint the optimal mechanism has
a simple form and can be described and computed in polynomial time. But the
problem remains open for other settings, such as, e.g., the monopolist problem for
a unit-demand buyer.

Approximation. In this work, we focused on studying exactly optimal mecha-
nisms. Similar to the case of independent prior distribution in the Bayesian model,
it is reasonable to look at approximately optimal mechanisms in the correlation-
robust framework, especially in the case when the exact optimum is too complex to
implement in practice. Considering all the complications of the optimal mechanisms
in the Bayesian framework, it seems that we are lucky to have simple optimal mech-
anism for the case of an additive buyer. It is quite likely that this is not going to be
the case in many other settings. In this situation a reasonable next step would be to
search for simple auctions that are approximately optimal in the correlation-robust
framework.
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