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Models in economics and game theory often assume that people behave as if they can solve very

complex problems, which can lead to misleading conclusions. To address this, I propose that we
supplement the theory of rational choice with a theory of tractable choice. Tractable choice asks

what an individual can accomplish using resources like time, memory, or data, which are often in
short supply. The field of economics has been disciplined when it comes to insisting that choices

in models be rational, but is less diligent in requiring that choices be tractable under reasonable

assumptions about what resources are available. Fortunately, theoretical computer science has
developed deep insights and powerful frameworks for understanding tractability. Using a recent

paper as a case study, I argue that tractability is a first-order concern when studying behavior.
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1. INTRODUCTION

Models in economics and game theory often assume that people behave as if they
can solve very complex problems. This is concerning if it leads to incorrect pre-
dictions about people’s behavior. It is also concerning when it comes to designing
markets or policies, because the markets and policies that are optimal in our models
may be too complicated for real-world actors to interact with. There is a need for
a theory that can distinguish predictions and recommendations that are unrealis-
tically complex from those that are at least plausible.
I propose that we supplement the theory of rational choice with a theory of

tractable choice. To define tractable choice, it is helpful to think of theory as taking
a stance on what kinds of behavioral predictions are credible. According to this
view, rational choice says that a prediction that “individual i follows strategy s” is
justified only if we can argue that individual i prefers s to any other strategy s′.
Tractable choice says that such a prediction is justified only if we can argue that
individual i is able to execute strategy s using the resources at her disposal.
Tractable choice asks what an individual can accomplish using resources like

time, memory, communication channels, or data, which are often in short supply.
Whereas rational choice relies on models of and assumptions about preferences,
tractable choice relies on models of these resources and assumptions about their
availability. Here, a choice is complex if making said choice requires a large amount
of resources. But complexity is multi-faceted. For example, a choice may be com-
plex insofar as the individual must deliberate for a long time, but simple insofar as
the individual only needs to communicate a “yes” or “no” answer.
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Economics and closely-related fields have been disciplined when it comes to in-
sisting that choices be rational, but are less diligent in requiring that choices be
tractable under reasonable assumptions about what resources are available.1 One
reason for this is the lack of consensus on how to model boundedly-rational choice,
which asks what people will do when faced with intractable problems (as opposed
to tractable choice, which simply asks what people can do). However, it is not
necessary to understand how individuals will respond to intractable problems in
order to design markets and policies where optimization is tractable.2 Immorlica
et al. [2020] is a great example of this approach.
Fortunately, as many readers know well, theoretical computer science has devel-

oped deep insights and powerful frameworks for understanding tractability. These
frameworks are often highly compatible with economic models, as they tend to be
based on a similar foundation of optimization, probability, and logic. They involve
general-purpose abstractions that seem capable of representing a wide range of
phenomena, not only electronic computers or algorithms implemented in standard
programming languages.
It is almost tautological to say that real choices must be tractable, but whether

tractability (as understood by computer scientists) should be a first-order concern
for the study of human behavior is not quite as obvious. There are three questions
that we must ask ourselves:

(1) Are computational models compatible with and helpful for understanding hu-
man behavior?

(2) Do predictions that respect rationality and tractability look meaningfully dif-
ferent from predictions that only respect rationality?

(3) Is it really necessary for us to study rational and tractable choice at the same
time, rather than having one community (e.g., economists) focus on rationality
while another community (e.g., computer scientists) focuses on tractability?

Using my recent paper on “Computationally Tractable Choice” [Camara 2022a]
as a case study, I argue that we should expect an affirmative answer to all three
questions. My aim is to convince the reader that it is worth taking tractability as
seriously as we take rationality, or risk reaching the wrong conclusions. For readers
that are already convinced, I hope this case study will help them convince others.
In future writing, I hope to address the natural follow-up question of how we can
integrate tractability into economic models in a more systematic way.3

1To a lesser extent, this is also true in algorithmic game theory. For example, there are many

models that study auctions or market design from an algorithmic perspective, insisting that allo-
cations can be computed in polynomial time or that the designer’s distributional knowledge come

from sample data. But, when it comes to the market participants, many of these models still
maintain assumptions like Bayes-Nash equilibrium that are hard to justify as tractable.
2Similarly, it is not necessary to understand precisely how individuals will respond to intractable

problems in order to design markets and policies where approximate optimization is tractable. We
can evaluate such markets and policies according to worst-case participant strategies, subject to
the constraint that those strategies be approximately optimal.
3A recent line of work in data-driven mechanism design [Immorlica et al. 2020; Cummings et al.
2020; Camara 2022b; Camara et al. 2020] offers some guidance for modeling tractable choice

when data is the limited resource. In addition, a recent line of work by Ryan Oprea develops an
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2. COMPUTATIONALLY TRACTABLE CHOICE

Are computational models compatible with and helpful for understanding human
behavior? I argue that the answer can be yes, using recent work that integrates
computational constraints into decision theory [Camara 2022a]. Still, one must be
thoughtful when applying computational models in economics. Developing frame-
works that translate results in theoretical computer science to statements relevant
for economists seems to require a nuanced understanding of both fields. Echenique
et al. [2011] illustrate this point very well.4

The premise of Camara [2022a] is that (i) decision-makers have only a limited
amount of time to make decisions, but (ii) making good decisions can be time-
intensive. To explore the implications for choice, I propose an axiom of computa-
tional tractability. This axiom is weak: it only rules out behaviors that are thought
to be implausible for any algorithm to exhibit in a reasonable amount of time.

I consider a model of choice under risk where the decision-maker has to make
many different decisions. For example, consider a consumer choosing from the
hundreds or thousands of products in a grocery store, or an investor purchasing
shares among the thousands of firms listed on the New York Stock Exchange. The
decisionmaker cares about high-dimensional random vectors, i.e.,

X = (X1, . . . , Xn)

For example, an investor cares about income Xi from assets i = 1, . . . , n, while
a consumer cares about consumption bundles, where Xi represents the quantity
consumed of good i.

A choice correspondence c maps a menu of feasible options to the decisionmaker’s
choices X from that menu. The correspondence c is defined over a rich set of menus.
This includes all binary menus where the decision-maker chooses between two lot-
teries X and X ′, as well as product menus where the decison-maker separately
chooses each component Xi of the lottery.

I call the choices c rational if they maximize expected utility for some utility
function u, a common assumption that is axiomatized by von Neumann and Mor-
genstern [1944]. Later on, I will return to this definition and evaluate its normative
appeal in the presence of computational constraints.
I assume that the decisionmaker’s choices can be generated by a Turing machine,

a powerful model of computation used in computational complexity theory to study
what algorithms can and cannot do. Given an appropriate description of a menu,
the Turing machine outputs a choice from that menu within a certain amount
of time. A choice correspondence is tractable if it can be generated by a Turing
machine, within an amount of time that grows at most polynomially in the length

experimental paradigm that controls resource complexity while varying incentives, and vice-versa

(see e.g., Oprea [2020]). This has already led to some remarkable results, many of which are not

yet public, and suggests a path forwards for the empirical study of tractable choice.
4Echenique et al. [2011] also integrate computational constraints into decision theory. Their

“revealed preference approach to computational complexity” shows that, in a model of consumer
choice, any finite and rationalizable dataset can be rationalized by tractable preferences. This
surprising result contrasts with the more naive conclusion that consumer choice is intractable

because it resembles an NP-hard problem.
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of the description.5

Having described the model, I can now address two common objections: that
humans are not Turing machines, and that computational complexity theory has a
misguided focus on worst-case runtime.
The first objection – that humans are not Turing machines – is not a problem in

itself. Strictly speaking, it is not necessary for choices to be generated by a Turing
machine for the results of Camara [2022a] to hold. All that is necessary is that
people are unable to efficiently solve problems that are thought to be fundamentally
hard. By contrast, suppose some person can make choices that maximize expected
utility for a given utility function u, and that those choices are intractable. Then,
using the algorithmic reductions developed in the paper, we could leverage that
person’s choices to efficiently solve problems that are thought to be fundamentally
hard. That would be a surprising (and important) result.
The second objection – about worst-case analysis – is best understood as an

issue with the definition of rationality, not with the definition of tractability. For
context, it is common in computer science to evaluate algorithms by their runtime
in the worst-case instance. Consider an algorithm A that takes one minute to solve
99% of inputs and one year for 1% of inputs, so that the worst-case runtime is one
year. A decisionmaker that does not have a year to deliberate might use another
algorithm A′: see whether A returns an answer within a minute, otherwise choose
something suboptimal. This is optimal 99% of the time, suboptimal 1% of the time,
and always takes about a minute.
Readers who object to worst-case analysis may point out that the algorithm A′

is a perfectly reasonable solution. That may be true. But A′ is not rational, insofar
as standard definitions of rationality require choice to be optimal 100% of the time
(e.g., von Neumann and Morgenstern [1944]). In contrast, A′ is tractable because
it makes a choice within the time constraint 100% of the time. Moving away from
worst-case analysis requires a more flexible definition of rationality, rather than a
different definition of tractability.
I use this framework of computationally tractable choice to obtain two kinds of

results. First, I show that, under standard rationality assumptions, computational
constraints necessarily lead to certain behavioral heuristics. Second, I use these re-
sults to give a formal justification for behavior that is not rationalizable by expected
utility preferences. I describe these results in the next two sections.

3. FOUNDATIONS FOR BEHAVIORAL HEURISTICS

Do predictions that respect rationality and tractability look meaningfully different
from predictions that only respect rationality? In Camara [2022a], I demonstrate
that they do look meaningfully different. I show that, under standard rationality
assumptions, computational constraints necessarily lead to forms of choice brack-
eting. These are heuristics that lead a decision-maker faced with many decisions

5In the paper, I distinguish between weak and strong tractability based on whether the Turing
machine has access to polynomial-size advice. I ignore this distinction here and state results

informally.
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i = 1, . . . , n to focus on each decision i in isolation, without considering the rest.6

Equivalently, I show that expected utility maximization is intractable unless the
utility function satisfies a strong separability property.
I start by introducing a symmetry assumption that I will later relax. The deci-

sionmaker’s choices are symmetric if she is indifferent between vectors (Xi, Xj) and
(Xj , Xi). Symmetry may be plausible for investors, where income from one asset i
is interchangeable with income from another asset j.
Theorem 1 of Camara [2022a] shows – assuming the P ̸= NP conjecture holds

– that rational, tractable, and symmetric choices c are observationally equivalent
to narrow choice bracketing. This means that a decision-maker’s choice of Xi in
dimension i does not depend on what she chooses in other dimensions j.

More precisely, this result shows that expected utility maximization is intractable
unless the utility function is additively separable, i.e.

u(x) = f(x1) + . . .+ f(xn)

In other words, Theorem 1 is a dichotomy theorem: it partitions a class of computa-
tional problems (parameterized by symmetric utility functions u) into polynomial-
time (if u is additively separable) and NP-hard (if u is not additively separable).

Theorems 2 and 3 generalize Theorem 1 by dropping the symmetry assumption
and strengthening P ̸= NP to the non-uniform exponential time hypothesis. They
show that rational and tractable choice correspondences are observationally equiv-
alent to dynamic choice bracketing, a larger class of heuristics that augment choice
bracketing with ideas from dynamic programming. These heuristics preserve the
computational advantages of choice bracketing while allowing for richer patterns of
behavior.
As in Theorem 1, it is useful to restate this characterization in terms of a separa-

bility property. Theorem 2 shows that if expected utility maximization is tractable
then u is Hadwiger separable. This property is a novel relaxation of additive separa-
bility that allows for some complementarity and substitutibility across dimensions,
but limits their frequency. It is quite restrictive and rules out many common utility
functions, such as

u(x) = f (x1 + x2 + . . .)

where f is non-linear. More precisely, Hadwiger separability is defined using the
notion of an inseparability graph. This is an undirected graph where nodes i and j
are connected if and only if the utility function u can be represented as

u(x1, x2, . . .) = f(xi, x−ij) + g(xj , x−ij)

The utility function u is Hadwiger separable if the inseparability graph is sufficiently
sparse. That is, if the graph’s Hadwiger number grows at most logarithmically in
the number of dimensions n.

Together, Theorems 1-3 describe the implications of computational constraints
for behavior under standard rationality assumptions. In doing so, they demonstrate
that certain behavioral heuristics are not only consistent with but predicted by an

6There is substantial empirical evidence for this kind of behavior. For example, see Tversky and

Kahneman [1981] or Rabin and Weizsäcker [2009] for experimental evidence.
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essentially standard model of choice with mild computational constraints. The
strength of these results illustrate that tractability can significantly sharpen our
predictions about behavior.

Next, we will see that tractability can do more than refine rational choice; it can
also highlight problems with how we define rationality in the first place.

4. CHOICE TRILEMMA

Is it really necessary for us to study rational and tractable choice at the same time
or is it with minimal loss to have economists focus on rationality and computer
scientists focus on tractability? I argue that it is important to study both at the
same time. My evidence is the choice trilemma of Camara [2022a], which formally
shows that incorporating tractability into our models highlights a problem with
how we define rationality.
Suppose a decision-maker intrinsically wants to maximize the expected value of a

given objective function ū. If ū is not Hadwiger separable, Theorem 2 implies that
the computationally-constrained decision-maker cannot make choices that exactly
optimize the expected value of her objective function. Instead, she might turn
to approximation algorithms that guarantee her a positive fraction of her optimal
payoff. Will this decision-maker make choices that appear rational to an outside
observer, insofar as they can be rationalized by some utility function u?

For many natural objective functions – and assuming NP ̸⊂ P/poly – Theorem 4
of Camara [2022a] shows that a computationally-constrained decisionmaker cannot
simultaneously (i) guarantee any non-zero fraction of her optimal payoff and (ii) be
rationalized as maximizing the expected value of some utility function u.

Theorem 4 also shows that the decision-maker can guarantee approximately op-
timality (i) if she is willing to drop rationality (ii). That is, there do exist tractable
algorithms that guarantee at least half of the decision-maker’s optimal payoff. These
algorithms do not satisfy the axiomatic definition of rationality of von Neumann
and Morgenstern [1944], because they do not exactly maximize the expected value
of any particular utility function u.

Altogether, my results imply a choice trilemma that relates rationality, tractabil-
ity, and approximate optimality as properties of choice. For many objective func-
tions ū, there exist choice correspondences that satisfy any two of these properties,
but not all three. That is, a computationally-constrained decision-maker may be
better off (according to her true objective function ū) if she is willing to make
choices that an analyst would not be able to rationalize. This suggests that alter-
native definitions of rationality are needed.

5. CONCLUSION

Using Camara [2022a] as a case study, I argued that tractability should be a first-
order concern for economists, and that tools from theoretical computer science can
be useful for integrating tractability into economic models.
Specifically, I asked three questions. First, are computational models compatible

with and helpful for understanding human behavior? Second, do predictions that
respect rationality and tractability look meaningfully different from predictions that
only respect rationality? Third, is it really necessary for us to study rational and
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tractable choice at the same time? The results in Camara [2022a] suggest that the
answers to all three questions are affirmative.
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