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Algorithms increasingly mediate repeated strategic interactions in marketplaces, from automated
pricing to auction bidding. When one party commits to a learning algorithm, the other party

can respond strategically over time by steering the algorithm’s internal state toward a favorable

long-run outcome. This note surveys a line of work that studies this “learning-as-commitment”
perspective via a geometric object we call a menu: the convex set of long-run outcomes an

opponent can induce against a fixed learning rule. Menus provide a common language for (i) com-

paring learning algorithms against strategic opponents, (ii) optimizing over learning rules under
uncertainty about opponent objectives, and (iii) characterizing when an opponent can manipulate

learning dynamics beyond what they could achieve with a static strategy. Using this machinery,

we converge upon no-swap-regret algorithms as an “optimal” commitment strategy for robust
learning against a strategic opponent. We also identify principled generalizations of no-swap-

regret beyond normal-form games that preserve the same strategic guarantees while remaining
computationally tractable.
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1. INTRODUCTION

Algorithms are increasingly used to make repeated decisions in strategic environ-
ments. A canonical example is automated pricing: two sellers may repeatedly
compete to sell an identical item, with the lower posted price winning the sale
(a Bertrand-style competition). In principle, sellers could adjust prices manually,
checking in periodically to respond to market conditions. In practice, many rely on
automated pricing tools that update based on observed competitor prices. Related
examples include automated bidders in auction markets and algorithmic agents in
platform-mediated interactions.

When a firm deploys a learning algorithm, it is not merely choosing a sequence of
actions. It is committing to a policy that maps the evolving interaction history to
future behavior. This changes the strategic problem faced by the opposing party:
a sophisticated opponent can choose time-varying actions designed to exploit the
learning rule itself. For instance, if a pricing algorithm undercuts competitors but
“resets” when prices dip too low (a common heuristic), an informed competitor
can deliberately trigger the reset and then exploit the resulting price increase. In
such interactions, the opponent can steer the learner’s dynamics to ensure their
own long-term success. This raises a basic design question:

Design problem. If you are deploying a learning algorithm in a repeated, general-
sum game, how should you design it to be robust to an opponent who responds
strategically over time?

Setup We consider a repeated two-player normal-form game, where in each round
t, the first player, called the learner, select a distribution xt ∈ ∆m over m pure
actions, and the second player, called the optimizer, selects a distribution yt ∈ ∆n

over n pure actions. The players receive bilinear utilities uL(xt, yt) and uO(xt, yt)–in
other words, their utilities are only a function of the probability that each move pair
occurs, a linear function applied to xt ⊗ yt. The learner’s strategy is an algorithm
A that maps the history of play so far Ht = (x1, y1), (x2, y2) · · · (xt−1, yt−1) to an
action xt for the next round. The optimizer selects a sequence of actions1 y1:T
strategically in order to maximize their own long-term utility. We let A(y1:T )
denote the move pair distribution induced by the optimizer playing y1:T against A.

Definition 1.1 Optimizer best-response. We consider an optimizer who, when
faced with the algorithm A, plays the sequence

BR(A, uO) = argmax
y1:T∈YT

uO(A(y1:T ))

Here we omit details on tie-breaking2.
What is a good algorithm for a learner to deploy in such an environment? A

natural starting point is the standard learning-theoretic solution concept of regret

1In fact, the optimizer may choose to play their own adaptive strategy instead of a fixed sequence;
however, in this note we primarily discuss learner algorithms which do not have correlated ran-
domness, against which there is no need for the optimizer to play adaptively. Thus, for simplicitly

of notation, we will write the optimizer’s strategy as a sequence rather than an algorithm.
2A careful formulation of tie-breaking is needed to ensure continuity of the learner’s outcomes,

see [Arunachaleswaran et al. 2024] for a rigorous treatment
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minimization. The (external) regret of the learner’s realized play is

RegretT := max
x∈X

T∑
t=1

uL(x, yt) −
T∑

t=1

uL(xt, yt),

and we say the algorithm is no-regret if RegretT = o(T ) (equivalently, average
regret vanishes).
A stronger notion is swap regret, which compares to the best action remapping

ϕ : X → X applied to the learner’s realized actions:

SwapRegretT := max
ϕ:X→X

T∑
t=1

uL(ϕ(xt), yt) −
T∑

t=1

uL(xt, yt),

and we say the algorithm has no swap regret if SwapRegretT = o(T ).
These guarantees may seem strong, but they are achievable: there are online

algorithms with vanishing regret against any (even adaptive) sequence of opponent
actions. In a repeated zero-sum game, playing a no-regret algorithm is essentially
the right strategy: a strategic opponent can always hold the learner to its minimax
value.
However, many market interactions are general-sum. Here the opponent is not

trying to minimize the learner’s utility, they are trying to maximize their own. In
this setting, regret guarantees can become a poor proxy for strategic robustness.
A vivid illustration appears in [Braverman et al. 2018], which shows that in a
repeated auction with a mean-based, no-regret buyer, a strategic seller can extract
essentially full surplus. The message is that the strategic guarantees of many no-
regret algorithms are too weak when an opponent optimizes against the algorithm.

So what should replace regret as the organizing principle? Across a series of
papers [Arunachaleswaran et al. 2024; 2025; Arunachaleswaran et al. 2025], we
study this question under varying information regimes. A common technical tool
is a geometric abstraction that makes the commitment aspect explicit: menus of
algorithms.

2. MENUS OF ALGORITHMS.

The central theme of this letter is a view of algorithms in terms of the geometric set
of all outcomes they can induce, an object which we call an algorithm’s “menu”.

Definition 2.1 Finite-time menu. For a horizon dependent algorithm AT , we de-
fine its menu M(AT ) as the convex hull of all vectors of the form 1

T

∑
t xt⊗yt for all

possible optimizer sequences y1, y2 . . . yT and the corresponding induced sequences
x1, x2..xT of the algorithm, i.e. xt = AT (Ht).

We refer to such vectors as Correlated Strategy Profiles or CSPs. CSPS have a
clean interpretation, at least in normal-form games: they are a distribution over
the learner’s and optimizer’s joint actions.

Definition 2.2 Correlated Strategy Profile (CSP). A CSP is a vector of the form
1
T

∑
t xt ⊗ yt.

If a learning algorithm A, which we define as a composition of horizon depen-
dent algorithms A1,A2 . . ., satisfies the property that its menus M(A1),M(A2) . . .
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converge under the Hausdorff metric to some set M, we define its menu M(A) to
be the limit set3 M (see [Arunachaleswaran et al. 2024] for a rigorous treatment).

Definition 2.3 Menu. For a consistent algorithm A = A1,A2 . . ., we define its
menu M(A) as limT→∞ M(AT )

A set M ⊆ ∆mn is said to be a menu if and only if there exists a consistent
algorithm A such that M is the menu of A. To elucidate this idea, we now provide
a few examples of algorithms and their corresponding menus.

2.1 Example Menus

Warm-up example 1. Consider the learning algorithm A∗ that ignores the interac-
tion history and plays x∗ on every round:

A∗
t (ht−1) := x∗ for all t ≥ 1 and all histories ht−1.

What outcomes can be induced against A∗? As the learning algorithm plays x∗

each day, and as the optimizer can play any sequence of their actions, the menu of
A∗ precisely the convex set of CSPs of the form x∗ ⊗ y for y ∈ Y.

Warm-up example 2. Next, let us consider an adaptive example: the learning
algorithm Â, which plays x∗ as long as the opponent has never played ŷ, and plays
x̂ otherwise:

ˆAt(ht−1) :=

{
x̂ if ŷ /∈ {ht−1},

x∗ otherwise,

As the optimizer could play ŷ each day, the menu of Â includes the CSP x̂ ⊗ ŷ.
Furthermore, at any point the optimizer may play some action y ̸= ŷ; at this point,
Â begins behaving exactly as A∗. Thus, its menu is the convex hull of x̂ ⊗ ŷ
and CSPs of the form x∗ ⊗ y for y ∈ Y. 4

2.2 Characterization of Menus

Given these examples, a natural question to ask is what subsets of ∆mn are true
menus–i.e., induced as the menu of some algorithm.

Theorem 2.4 [Arunachaleswaran et al. 2024]. A closed, convex subset
M ⊆ ∆mn is an asymptotic menu iff for every y ∈ ∆n, there exists a x ∈ ∆m

such that x⊗ y ∈ M.

The necessity of the condition is easy to argue, since every menu must contain a
point corresponding to when the optimizer picks the same action in each round.
The sufficiency of the condition is proved via Blackwell Approachability.

3If this property is satisfied, we call A a consistent algorithm; in [Arunachaleswaran et al. 2024]

we show that many focal learning algorithms, such as no-swap regret algorithms, are consistent.
4It is possible for an optimizer to induce a move pair distribution of the form x̂ ⊗ y ̸= ŷ in the
single day after they defect from ŷ and before the learner can react. However, the contribution of

this day to the CSP will disappear in the limit, and thus this CSP is not contained in the menu.
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2.3 Menus as a tool for learning in strategic settings

The concept of a menu allows us to recast the game between the learner and opti-
mizer in geometric terms5:

—The learner picks an algorithm A and offers the menu M(A) to the optimizer.

—The optimizer picks an outcome CSP φ ∈ M(A) that maximizes its utility with
ties broken in favor of the learner. The utilties of both the learner and optimizer
are linear functions of CSPs in M(A). Specifically, the learner gets utility:

VL(M(A), uO) = max{uL(φ)|φ ∈ argmax
ϕ∈M(A)

uO(ϕ)}

Importantly, given the menu M of an algorithm, it is easy to see what outcome
a strategic optimizer with utility uO would induce: it will be the CSP of M in the
extreme direction of uO.
It is also possible to recast the no-regret and no-swap-regret properties purely in

terms of menus - to aid with this we define two special menus. We say that the
CSP φ is no-regret if it satisfies the no-regret constraint

∑
i∈[m]

∑
j∈[n]

φijuL(i, j) ≥ max
j∗∈[n]

∑
i∈[m]

∑
j∈[n]

φijuL(i, j
∗). (1)

Similarly, say that the CSP φ is no-swap-regret if, for each j ∈ [n], it satisfies

∑
i∈[m]

φijuL(i, j) ≥ max
j∗∈[n]

∑
i∈[m]

φijuL(i, j
∗). (2)

For a fixed uL, we will define the no-regret menu MNR to be the convex hull
of all no-regret CSPs, and the no-swap-regret menu MNSR to be the convex hull
of all no-swap-regret CSPs. Menus provide a clean geometric statement of the
no-regret and no-swap-regret properties. These algorithmic properties (restrictions
on transcripts) translate to geometric containment of menus within corresponding
polytopes (restrictions on outcomes).

Theorem 2.5 [Arunachaleswaran et al. 2024]. A learning algorithm A
is no-regret iff M(A) ⊆ MNR. Likewise, A is no-swap-regret iff M(A) ⊆ MNSR.

We provide a visualization of these containment properties in Figure 1.

2.4 Results about Menus

Among no-regret algorithms, it is well known that different algorithms can induce
distinctly different outcomes: for instance, multiplicative weights does not satisfy
the no-swap-regret property, while other constructions (e.g., [Blum and Mansour
2007]) do satisfy this strictly stronger guarantee. However, it was not a priori

5While this game is a proxy for the actual finite horizon game between the learner and the

optimizer, as long as the optimizer picks the best utility point in M(AT ) and tie-breaks in favor

of the learner, it is not hard to show that the sequence of utilities obtained by the learner converges
in the limit to the utility VL(M(A), uO) achieved by the learner in this platonic menu version of

the game ( [Arunachaleswaran et al. 2024]).
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Fig. 1. Different no-regret menus in relation to each other. Here, A is any no-regret algorithm
and M(A) is its menu. M(A) must be contained within MNR, and must contain MNSR.

clear whether algorithmically distinct NSR algorithms—such as [Blum and Man-
sour 2007] and [Dagan et al. 2024]—admit the same set of achievable outcomes,
or whether their differing update rules lead to fundamentally different strategic
guarantees. The menu framework resolves this question.

Theorem 2.6 [Arunachaleswaran et al. 2024]. If A is a no-swap-regret
algorithm, then M(A) = MNSR. Further, the no-swap-regret menu MNSR is the
convex hull of all CSPs of the form x⊗ y, with x ∈ ∆m and y ∈ BRL(x).

This result both collapses the menu of all no-swap-regret algorithms to the same
menu and simultaneously provides a vertex definition of this polytope, to go along
with its hyperplane based definition. We discuss the implications of this result -

(1) First, all no-swap-regret algorithms are asymptotically equivalent, in the sense
that regardless of which no-swap-regret algorithm you run, any asymptotic
strategy profile you converge to under one algorithm, you could also converge
to under another algorithm (for appropriate play of the other player). This
is true even when the no-swap-regret algorithms appear qualitatively quite
different in terms of the strategies they choose (compare e.g. the fixed-point
based algorithm of [Blum and Mansour 2007] with the more recent algorithms
of [Dagan et al. 2024] and [Peng and Rubinstein 2024]).

(2) In particular, there is no notion of regret that is meaningfully stronger than
no-swap-regret for learning in (standard, normal-form) games. That is, there is
no regret-guarantee you can feasibly insist on that would rule out some points
of the no-swap-regret menu while remaining no-regret in the standard sense. In
other words, the no-swap-regret menu is minimal among all no-regret menus:
every no-regret menu contains MNSR, and no asymptotic menu (whether it is
no-regret or not) is a subset of MNSR.

(3) Finally, these claims are not generally true for external regret. There are dif-
ferent no-regret algorithms with very different asymptotic menus (as a concrete
example, MNR and MNSR are often different, and they are both asymptotic
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menus of some learning algorithm by Theorem 2.4).

3. APPLICATIONS OF THE MENU FRAMEWORK

The rest of this note is a tour of three papers that develop the menu framework
in complementary directions. One direction asks what it means for an algorithm
to be globally good against all possible optimizers, and whether standard learning
algorithms are actually optimal in that sense. A second direction asks how to
choose an algorithm when you have a known distribution over opponent types.
And a third direction revisits the classical swap-regret and correlated equilibrium
story, and asks: outside of normal-form games, what does it mean for a learning
algorithm to be non-manipulable?

3.1 Pareto-optimal algorithms: when is one learning algorithm strictly better than
another?

If you must commit to a learning algorithm in a general-sum repeated game, but you
do not know the utility of the optimizer, what does it mean for this commitment
to be “optimal”? In [Arunachaleswaran et al. 2024], we formalize a dominance
relation between learning algorithms that is explicitly strategic.

We say an algorithm A is Pareto-dominated if there exists another algorithm A′

that achieves at least as high long-run utility as A against every opponent payoff
function, and strictly higher utility for at least one opponent type. An algorithm
is Pareto-optimal if it is not Pareto-dominated. This definition is intentionally
weak: it does not insist on optimality against each opponent type, only that the
algorithm is not uniformly outperformed across all types. Nonetheless, we show
in [Arunachaleswaran et al. 2024] that many standard no-regret algorithms, such
as Multiplicative Weights and Follow-the-Perturbed-Leader, fail even this lenient
benchmark. This leads to the question of whether there is any algorithm that is
both no-regret and Pareto-optimal.

Our main positive result is that the stronger condition of no-swap-regret is suffi-
cient for Pareto-optimality. We prove this result by redefining Pareto-optimality in
terms of menus and characterizing it via geometric properties, which we then show
that no-regret menus satisfy. One key property is inclusion-minimality; a menu M
is inclusion-minimal if there is no valid menu whichx is strictly contained within
M.

Theorem 3.1 Informal. Any algorithm whose menu is inclusion-minimal and
contains the maximum learner utility CSP is Pareto-optimal.

3.2 Unknown opponents: choosing an algorithm under a distribution over optimizer
types

The Pareto-optimality benchmark is most natural when the optimizer’s utility is
completely unknown. In the other extreme, when the learner has full knowledge of
the optimizer’s utility, this becomes a Stackelberg game in the strategy space of al-
gorithms, and approximately optimal solutions are known for this problem [Collina
et al. 2023]. But in many applications, one has partial information: a model of com-
petitor behavior in pricing, historical data about user tradeoffs on a platform, or a
prior over agent “types.” This motivates a Bayesian version of the algorithm-design
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problem.
In [Arunachaleswaran et al. 2025], the learner commits to an algorithm, the

opponent payoff function is drawn from a distribution D, and the opponent then
best-responds in algorithm space. The learner’s objective is to maximize expected
long-run utility given knowledge of D. It is not clear how much the learner can
infer about the optimizer’s realized type; as the optimizer is non-myopic, it might
be in their best interest to obfuscate. Additionally, the learner must balance their
attempt to learn, to the extent possible, versus exploiting their information.
Naively, this problem may initially seem computationally prohibitive: the space

of history-dependent algorithms is enormous, and computing a best response to
a fixed algorithm can be NP-hard (making it tricky to systematically predict or
evaluate the best response against a candidate commitment). Menus again make
the problem tractable in natural regimes. Each opponent type induces a linear
objective over the learner’s menu, and a distribution over opponent types therefore
induces a distribution over linear objectives. The learner’s problem becomes: choose
an algorithm whose menu scores well in expectation under these objectives.
We optimize implicitly over the set of all menus by focusing only on what out-

comes the menu incentivizes for each optimizer. This yields efficient methods for
computing approximately optimal commitment algorithms under D (namely, poly-
nomial time under constant game size or bounded support assumptions). Impor-
tantly, our characterization of menus constrains this search so as to guarantee that
any optimized menu can be implemented by an actual learning algorithm.
We also study a robustness-motivated restriction in which the learner insists on

no-regret behavior while still optimizing expected performance under D. Here,
the menu viewpoint again clarifies the answer: the right algorithmic class is no
swap regret, which both preserves the relevant strategic robustness and admits
optimization of the induced menu.

3.3 Swap regret and correlated equilibria beyond normal-form games: starting from
non-manipulability

In normal-form repeated games, no swap regret has a clean strategic interpretation:
it is tightly connected to correlated equilibrium and captures a sense in which the
opponent cannot benefit from dynamically steering the learner. This motivates
taking “absence of dynamic manipulation” as a primitive desideratum.

Non-manipulability. Fix a learner algorithm A and an opponent utility func-
tion uO. Let V dyn

T (A, uO) be the maximum expected total utility the opponent
can achieve over T rounds using any history-dependent strategy against A. Let
V stat
T (A, uO) be the maximum expected total utility when the opponent is re-

stricted to a static mixed strategy (the same distribution each round). We call
A non-manipulable if for every uO,

V dyn
T (A, uO)− V stat

T (A, uO) = o(T ).

Informally: regardless of the opponent’s objective, they cannot extract linear-in-T
advantage by playing dynamically rather than statically.
Beyond Normal-Form Games Many strategic environments are not well-modeled

as repeated normal-form games. Returning to pricing: payoffs may depend on
per-period costs, demand states, or other exogenous factors, leading to repeated
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Bayesian or more structured games. It was not clear what the “right” generalization
of swap regret was in these richer settings; decompositions of action distributions
are no longer unique, leading to many possible ways to “swap” the same mixed
action. Thus, it was an open question whether there existed an efficient algorithm
which was non-manipulable and no-regret. Prior algorithms that guaranteed non-
manipulability and no-regret in these games were not known to be computationally
tractable. Meanwhile, more tractable regret notions did not actually rule out ma-
nipulability. [Arunachaleswaran et al. 2025] studies a broad class called Polytope
games (which generalizes both Bayesian games and Extensive-form games) and uses
non-manipulability as the starting point for defining an appropriate notion of swap
regret.

In menu language, non-manipulability has a particularly crisp geometric meaning:
beneficial manipulation manifests as an extreme point that cannot be generated by
any static product distribution. Equivalently, A is non-manipulable if and only if
every extreme point of its menu is a product distribution. The no-regret condition
further constraints what sort of product distributions the menu must contain. While
the question of “what should be swapped” does not have a natural translation
beyond normal-form games, the menu interpretation of non-manipulability operates
identically.
We introduce a new notion of swap regret, profile swap regret, which is measured

by the distance from a CSP to a specific “non-manipulable” menu composed of
product distribution extreme points. Profile swap regret is efficiently achievable
(our work gives algorithms with O(

√
T ) profile swap regret) and guarantees non-

manipulability.

4. CLOSING THOUGHTS

Against non-myopic opponents, a learning algorithm effectively serves as a com-
mitment, shaping the set of long-run outcomes the opponent can induce. Menus
provide an explicit geometric characterization of these outcomes and a unifying lens
for comparing algorithms (via Pareto dominance), selecting algorithms under priors
(Bayesian design), and identifying stability notions that prevent manipulation in
richer game models (profile swap regret).
While this work focuses on the two-player setting, the dynamics of multiple in-

teracting learning algorithms and strategic agents remains an open frontier, where
menus may help define appropriate notions of equilibria. Moreover, in complex
strategy spaces, such as high-dimensional auctions or pricing environments, under-
standing which menus admit computationally efficient optimization becomes a crit-
ical challenge. Ultimately, as algorithms increasingly govern economic interactions,
viewing them not merely as adaptive procedures but as geometric commitments
that induce constrained outcome sets will be essential for designing robust and
transparent marketplaces.
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