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ML model evaluation often takes one of two main approaches: risk minimization, associated with “high accuracy”
or calibration, meaning that predictions are “trustworthy” and can be interpreted from a probabilistic lens. There
is an extensive line of work which has studied the relationship between risk minimization and calibration, mostly
focusing on the binary outcome setting. Even in the binary setting, there are a variety of proposed calibration
metrics which non-trivially interact. In the multiclass label setting, the choices to be made are even more complex
and particularly there are different semantics for different notions. Here, we briefly present an annotated reading
list reviewing some of the proposed definitions and their relationships.

Introduction
The classical understanding of calibration is that a prediction is calibrated if among
the days on which the probability of rain was forecasted is p, the average number of
rainy days is p, e.g., [DeGroot and Fienberg 1983]. This is formalized by saying a
predictor f : X → [0, 1] is calibrated if

Pr[Y = 1|f(X) = p] ≈ p ∀p ∈ im(f) . (1)

In the binary setting, Equation (1) satisfies two nice desiderata of trustworthiness:

a. self-referential: predicting p means the true probability of the positive label is
p, and

b. it precisely estimates the loss incurred by a decision maker using the prediction.

The first of the two desiderata is relatively self-explanatory. The second requires
more context in terms of a decision maker. We understand a decision maker as an
agent equipped with a loss function mapping from actions and outcomes to scores.
The decision maker can precisely estimate the loss, if the given prediction allows
the decision-maker to precisely compute the expected loss for a taken action in
comparison to the actual incurred loss for the same taken action. It is a matter
of some computations to show that Equation (1) fulfills this requirement, if the
decision maker orients its action only based on the prediction, e.g., [Zhao et al.
2021].

Vanilla calibration (Equation (1)) as provided above gives trustworthiness desider-
ata when the prediction task is binary, e.g., rain or no rain. If the set of considered
possible outcomes grows, e.g., rain, sun, cloudy, i.e., Y is non-binary but finite, then
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the formal definitions of calibration, and their achieved trustworthiness desiderata
need reconsideration.

A naïve extension of Equation (1) following [Kull et al. 2019] to,

Pr[Y = y|f(X) = p] ≈ py ∀y ∈ Y, ∀p ∈ im(f) , (2)

where f : X → ∆(Y) and py denotes the y-component of the probability vector
p, is problematic. The sample complexity of calibration grows in the number of
conditional probabilities considered (cf., the “for all”-quantifier over im(f)). Hence,
Equation (2) called full distribution calibration results in an exponential blowup in
sample complexity. Scholarship essentially suggests two ways around the problem.

One solution is to consider only a relevant subset of conditions usually defined
by the downstream decision makers. That is, calibration is aimed to be achieved
only around decision boundaries of the decision makers. This requirement can
be further weakened by focusing only on the loss estimates instead of the action
recommendations made through the predictions; this notion is called decision
calibration.

One alternative proposal is that calibration is generalized and achieved for relevant
summary statistics, such as the mean or class-wise distributions. The variety of
definitions for multiclass calibration have been mainly proposed with a focus on
computationally constructing predictors with small statistical complexity. This final
semantic generalization of calibration is called property calibration.

Interestingly, recent work shows that the semantic notions of decision calibration
and property calibration have a strict separation in the multiclass setting. In the
following reading list, we try to reflect the approaches to multiclass calibration. The
list is not meant to be exhaustive, but rather should demonstrate differing notions.

Reading List
Distribution calibration

(1) Kull et al. [2019] propose a “natively multiclass calibration” method. In doing
so, they offer a clean introduction of a natural extension of Equation (1) to
multiple classes Equation (2), albeit with exponential computational and sample
complexity. They further relate the full calibration extension to multiple classes
to other suggestions made in literature which demand for class-wise calibration,
respectively best-class calibration.

(2) Gopalan et al. [2024] discuss the fragile relationship between definitions of
calibration in multiclass settings and the need to balance (a) sample complexity,
(b) computational complexity, and (c) robustness of calibration notions. To
this end, they propose the metric of smooth projected calibration error for
multiclass settings and analyze the sample and computational complexities of
attaining a predictor with low calibration error in this sense. Their work focuses
on distributional predictors which might be used for binary subset selection
problems as the downstream decision.

Decision calibration

(3) Zhao et al. [2021] propose a definition of calibration for multiclass settings
that is motivated by the usefulness of predictions for downstream decision-
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making. Motivated by loss outcome indistinguishability, they say a predictor is
decision calibrated if a loss-minimizing decision-maker attains near-optimal loss
by trusting a model’s probabilistic predictions. Importantly, they require the
action space of the decision-maker to be polynomially bounded in the number
of classes, which stands in contrast to distribution calibration, where action
spaces are not considered, and distance is simply measured from a predicted to
observed distribution.

(4) Fröhlich and Williamson [2024] study the evaluation of imprecise forecasts.
That means that forecasts are not single probability distributions, but sets of
probability distributions. The paper focuses on loss functions and calibration
as evaluation metrics. Even though imprecise forecasting is a rather exotic
topic, they are a perfect ground to study the meaning of evaluations. In
particular, the authors argue that a distinction between the goal of trustworthy
uncertainty estimates and the goal of recommending favorable actions is required
for imprecise forecasts, but not for precise ones.

(5) Noarov et al. [2025] study the computation of sequential predictions which fulfill
a polynomial number of unbiasedness conditions. In particular, the authors
can guarantee sample efficient predictions which are calibrated in a multiclass
setting. This is achieved by putting focus on decision relevant conditions, i.e., the
unbiasedness conditions can be defined through action policies by the decision
maker.

Property calibration

(6) Jung et al. [2021] provide computational methods to predict such that “moment
multicalibration” is met. Multicalibration is the extension of calibration as in
Equation (1) to simultaneously hold on a set of subgroups G ⊆ 2X . Moment
calibration refers to the understanding of Equation (1) as a moment matching
task. That is, the expected value of the output should be equal to the prediction,
conditioned on the prediction. The authors extend this moment matching idea
beyond the first order moment to higher order moments, including the variance.

(7) Noarov and Roth [2023] generalize the notion of moment multicalibration [Jung
et al. 2021] into Γ-multicalibration for continuous, real-valued properties.1 In this
work, the authors propose a definition of Γ-multicalibration, which intuitively
suggests that, conditioned on a model f predicting a property value r (e.g.,
predicting the mean is r), the property value should be approximately r. They
characterize the set of “calibratable” properties Γ and present batch and online
algorithms to Γ-multicalibrate a given predictor f : X → R for a set of labels
Y ⊆ R for continuous, real-valued Γ.

(8) Gneiting and Resin [2023] take a statistical perspective on forecast evaluation
and model diagnostics. The aim of the paper is to develop calibration for real-
valued forecasts. In particular, the authors suggest the notion of T -calibration
using the concept of identifiability for properties2. Their definition is, up to

1Properties are functions Γ: ∆Y → R mapping distributions over labels to descriptive statistics,
such as the mean Γ(p) = EY ∼p[Y ], or mode Γ(p) = arg maxy py .
2An identifiable property is a property Γ: ∆Y → R such that there exists a function ν : Y ×R → R
with Γ(p) = γ ⇔ EY ∼p[ν(Y, γ)] = 0. For instance, the mean or the median.
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minor details, equivalent to Γ-calibration from [Noarov and Roth 2023]. The
developments within this paper and [Noarov and Roth 2023] have, even though
strongly related, happened independently.

Relationships between semantic notions

(9) Derr et al. [2025] examine the works above (among others), and proposes the
semantic clusters of distribution calibration, property calibration, and decision
calibration to characterize the differences and relationships between the semantic
notions. In the binary setting, Derr et al. [2025] shows the semantic notions are
equivalent, but establishes that decision calibration and property calibration
are strictly separate in multiclass settings.
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