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1. INTRODUCTION

This letter provides an overview of our recent work on “Learning Treatment Ef-
fects While Treating Those in Need” (published at the 2025 ACM Conference on
Economics and Computation) as well as a more general perspective on design goals
for algorithmic systems that are used to allocate limited resources in policy set-
tings. Our motivation is the kind of algorithms that are used widely at present
to prioritize candidates for various kinds of social interventions: public housing as-
sistance, drop-out prevention programs in education, unconditional cash transfers
in development, or a variety of other social services. By far the most common
way of constructing such systems is the lens of predictive allocation: the algorithm
designer identifies an outcome that the program seeks to alter (long-term home-
lessness, dropping out of school, etc) and constructs a predictive model for that
outcome [Vaithianathan and Kithulgoda 2020; Aiken et al. 2022; Pan et al. 2017;
Toros and Flaming 2017]. Candidates are ranked by predictions of risk so that, e.g.,
limited spots in a housing program might be offered to those at greatest predicted
risk of long-term homelessness.
We argue that algorithm designers should take a more expansive view of the

design goals that such systems aim to optimize. Our work focuses specifically on
the tradeoff between predictive targeting and causal learning: if resources are al-
located strictly according to predicted risk, it becomes difficult to tease out to
what extent the program improves outcomes for its beneficiaries. Learning such
causal effects requires experimentation, where otherwise similar candidates some-
times receive different allocation decisions. However, randomized experimentation
would depart from the goal of strictly aligning allocations with predictions of risk.
The fear of denying services to higher-need applicants is one of the main reasons
that randomized controlled trials are relatively uncommon in many policy settings.
However, high-quality evidence about program effectiveness is absolutely critical in
order to improve services over time.
Our work asks how stark the tradeoffs really are. We construct a multiobjecitve
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framework for optimizing a policy for allocating a limited resource. The goal is to
optimally trade off between the goals of (1) allocating resources to individuals that
have been identified as having higher levels of risk or need; and, (2) introducing
enough random variation to accurately estimate the average treatment effect of
the intervention. Our method allows policymakers to explore the Pareto frontier
between these goals. We apply this framework to data on human service programs
in Allegheny County, Pennsylvania and find that the tradeoffs between these goals
are empirically quite tractable: with careful design, policymakers can get most of
one without giving up too much of the other.

More broadly, we suggest that algorithm designers should incorporate other goals
(like causal evaluation) explicitly into the design of allocative systems. Framing
allocation as a prediction problem naturally suggests that the best policy is one
that aligns with the most accurate predictive model. Prediction may often be a
reasonable way to construct a proxy for an individual’s need for a service. However,
it is still only a proxy (and one which we have shown in other work may not always
align well with other goals, like benefit from an intervention [Sharma and Wilder
2025]). It may be very worthwhile to give up a bit of predictive performance in order
to ensure that algorithmic systems reflect the much broader array of challenges for
decision making in social systems.

2. A MULTIOBJECTIVE FRAMEWORK FOR LEARNING AND TARGETING

The specific setting studied in our paper concerns the allocation of a single limited
resource. The policymaker chooses a function p : X → [0, 1] which maps an individ-
uals’ features X ∈ X to the probability with which they are allocated treatment.
The policymaker specifies upfront a function u(X) which specifies their preferences
for which individuals should be allocated the resource; we refer to u as their target-
ing utility function. In our running example, u is the output of a predictive model
for some adverse outcome: the policymaker prefers that the resource be allocated
to individuals with higher levels of predicted risk. However, our algorithmic frame-
work is agnostic as to how u is constructed. Individuals have potential outcomes
(Y (0), Y (1)), where outcome Y (1) is realized if they receive the intervention and
Y (0) is realized if they do not. We assume that (X,Y (0), Y (1)) are drawn iid from
some joint distribution. The average treatment effect of the intervention is given by
τ = E[Y (1)−Y (0)]. Our goal is to design an allocation p which will enable accurate
estimates of τ while still scoring highly according to u. Allocations are subject to
a budget constraint that at most a b fraction of the population can receive the
intervention, i.e., that E[p(X)] ≤ b.
To formalize the goal of accurately estimating treatment effects, we turn to the

semiparametric efficiency bound for the average treatment effect [Hahn 1998]. Sup-
pose that we construct an estimate τ̂ for the ATE using any of the many methods
developed in the causal inference literature. We would like to minimize the ex-
pected error in the estimate, E[(τ̂ − τ)2]. Since standard estimators are unbiased,
the entirety of the mean-squared error in an estimate is given by the variance of
the estimator. This is precisely the quantity that the efficiency bound gives: the
smallest possible variance for any estimator.
We show that, under many circumstances, the efficiency bound is itself upper
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bounded by a function of the form

E
[
a1(X)

p(X)
+

a0(X)

1− p(X)

]
for a pair of functions a1(X) and a0(X). Intuitively, the performance of estima-
tors for the treatment effect degrades rapidly as p(X) gets closer to 0 or 1, i.e.,
as allocations get closer to deterministic. The efficiency bound is exactly given by
taking a0 and a1 to be the conditional outcome variances, a0(X) = Var(Y (0)|X)
and a1(X) = Var(Y (1)|X) [Hahn 1998]. Since the variances are typically unknown
before collecting experimental data, we show how structural properties, side infor-
mation, or assumptions about the distribution can be used to construct an upper
bound on the worst-case variance. The particular values of a0 and a1 for the opti-
mization problem then arise from such choices (e.g., stipulating that outcomes are
binary, or using historical data to learn about Y (0)).
One possible allocation policy is to spend the entire budget on the b-fraction of

the population with the highest value of u(X). This corresponds to the predictive
allocation strategy often employed in practice. However, since p(X) is either 0
or 1 for every X, estimating treatment effects is impossible. At the other end
of the spectrum is a completely uniform allocation policy, p(X) = b for all X,
which corresponds to a randomized controlled trial. This maximizes the power to
estimate treatment effects (formally, minimizes the efficiency bound when a1 and
a0 are constant) but entirely sacrifices the targeting goal.
While these extremes are the strategies typically employed in practice (predictive

allocation most frequently, randomized trials rarely), our paper proposes an entire
spectrum of allocation policies in between. Formally, these are derived as solutions
to a family of multiobjective optimization problems that balance the targeting and
causal learning goals. In particular, we aim to find allocation probabilities p which
solve an optimization problem of the form

min
p

E
[
a1(X)

p(X)
+

a0(X)

1− p(X)

]
E[p(X)u(X)] ≥ c (1)

E[p(X)] ≤ b

p(X) ∈ [γ, 1− γ] ∀X ∈ X .

where the parameter c is chosen by the policymaker to control the extent to which
allocation should align with their targeting utility function u. As discussed in our
work, this core formulation is also easily extensible to include constraints enforcing
additional goals. The last constraint exerts limited influence on the actual solution
since optimal policies will never have p(X) at 0 or 1 by virtue of the objective
function. However, the parameter γ measuring closeness to deterministic solutions
appears in the exact statement of our sample complexity bounds, with more samples
required when the designer wishes to optimize over closer-to-deterministic policies.
A complete discussion of this topic can be found in our full paper.
This is a strictly convex optimization problem in p, subject to linear constraints.

The challenge is that this optimization problem is over the space of policies, i.e.,
functions p : X → [0, 1]. In other policy learning settings, a typical approach is to
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optimize over a parameterized class of policies (e.g., linear models, decision trees,
etc.), with sample complexity bounds for optimal policy learning then depending
on a measure of the complexity of this class like the VC dimension [Athey and
Wager 2021; Chernozhukov et al. 2019; Swaminathan and Joachims 2015].

In our work, we show that solutions to the optimization problem above have a
special structure. Effectively, the function p can be parameterized very concisely,
just via a handful of parameters that correspond to the dual variables. This view-
point enables efficient optimization and learning. To formalize this idea, we take
the dual of the population optimization problem. Let the constraints be collectively
denoted as functions gj , j = 1...J . The dual is

max
λ≥0

min
p∈[γ,1−γ]X

E

a1(X)

p(X)
+

a0(X)

1− p(X)
+

J∑
j=1

λj(g(p(X), X)− cj)


where λj is the dual variable associated constraint j. The dual has the attractive
property that the inner objective is separable across X, allowing us to push the
min inside the expectation:

max
λ≥0

E

 min
p(X)∈[γ,1−γ]

a1(X)

p(X)
+

a0(X)

1− p(X)
+

J∑
j=1

λj(g(p(X), X)− cj)

 .

The strategy proposed in our work is to estimate the dual parameters using a sample
of X’s drawn from the distribution of interest by solving the sample problem

max
λ≥0

1

n

n∑
i=1

 min
p(Xi)∈[γ,1−γ]

a1(Xi)

p(Xi)
+

a0(Xi)

1− p(Xi)
+

J∑
j=1

λj(g(p(Xi), Xi)− cj)

 . (2)

This is a strictly convex optimization problem in n variables that can easily be
solved using standard methods. Then, to compute the optimal allocation proba-
bility p(X) for any given individual, we solving the inner minimization problem at
the estimated dual parameters, i.e., we compute

p̂(X) = argminp(X)∈[γ,1−γ]

a1(X)

p(X)
+

a0(X)

1− p(X)
+

J∑
j=1

λ̂j(g(p(X), X)− cj) (3)

separately for each individual and randomize them to be treated with probability
p̂(X).
Theoretically, we establish that this strategy enjoys strong sample complexity

guarantees. Intuitively, the class of policies that we optimize over has only J pa-
rameters, one per constraint (of which there were two in the core formulation dis-
cussed above). We show that the number of samples from the covariate distribution
required in order to produce an approximately optimal policy scales at parametric,
root-n rates, with the complexity of the policy class represented by a function of J :

Proposition 1 [informal] : In order to obtain policy p̂ that is within ϵ of both

optimality and feasibility for Problem 1, it suffices to have n = O
(

J3

ϵ2

)
samples.

Empirically, we simulate the policies output by our method on historical data
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Fig. 1. Tradeoff between predictive targeting and causal learning on historical data from the

Allegheny County Human Services Department. The horizontal axis shows the number of samples
that would be required to power an estimate of the average treatment effect. The vertical axis

shows the fraction of individuals who would reenter jail in the next year that are targeted for

the program. “Optimized” refers to the Pareto frontier of designs output by our method while
“need-based targeting” refers to allocating entirely to individuals with the highested predicted

risk. “‘RCT” gives the performance of a randomized controlled trial that uniformly allocates the

treatment. “90% utility” labels the point on the Pareto curve output by our method that achieves
90% of the targeting utility of need-based targeting. Finally, “RD” shows the number of samples

required to power a regression discontinuity estimate of the local treatment effect.

from the Allegheny County Human Services Department. In this letter, we re-
produce one example result, which uses administrative data on the outcomes of
formerly incarcerated people reentering the community. We mimic standard prac-
tice by fitting a machine learning model to predict the probability that a given
individual will reenter jail within the next month. Our evaluation models a hypo-
thetical program which offers an intervention to avert jail reentry. The policymaker
would like to offer this program preferentially to individuals with a higher prob-
ability of reentering jail and we characterize the tradeoff between this targeting
goal and learning causal effects. To provide a concrete interpretation for power to
learn causal effects, we rescale asymptotic variance into the number of samples that
would be required to estimate of the average treatment effect with 5% type-1 error
and 80% power.
Our main empirical result is that the tradeoff between these goals is substantially

mitigated by optimal policy design. Figure 1 shows the tradeoff in the form the
Pareto curve output by our method, obtained by varying the value of the targeting
utility constraint c. At one end of the spectrum we have a randomized controlled
trial that allocates the intervention uniformly, without consideration for risk. As the
value of c increases, the allocation converges towards thresholding on the predicted
risk. However, the shape of the curve in between is highly concave, indicating that
the policymaker can obtain most of one goal without giving up too much of the
other. For example, the allocation policies output by our method achieve 90% of
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the maximum possible performance at targeting high-risk individuals while requir-
ing less than twice the number of samples in order to estimate treatment effects as
the ideal randomized trial. Similar findings surface across a number of other pro-
grammatic settings and simulations. At the far end of the spectrum, we compare
to the number of samples that would be required to power an estimate of a local
average treatment effect via a regression discontinuity design if the policymaker
instead used pure predictive allocation. The number of samples is much larger,
several times that required by our method at the elbow of the curve. This indicates
that the price (in terms of causal learning) required to eliminate the last bit of
randomization is very high, imposing a sample size which is infeasible for many
programmatic settings.

3. DISCUSSION AND CONCLUSION

We have shown how the targeting interventions to people at higher levels of present
need can be reconciled with the goal of introducing randomization to learn whether
these interventions produce real benefits. There is still research to be done in order
to bring these ideas to the operational reality of public services. For example, in
this work, we focused on designing policies that adhere to a set of constraints in-
expectation on a fixed distribution. In reality, allocations are subject to a variety
of other complications in implementation, like hard budget constraints, dynamic
arrivals of applicants and resources, drift in covariate distributions, and so on. In
subsequent work, we showed how techniques from combinatorial optimization allow
us to enforce hard budget constraints (which requires dependent assignments) while
still providing statistical valid estimates of treatment effects [Yamin et al. 2025]. In
fact, we find that doing so actually provides substantial variance reduction benefits
and may be useful in other experimental design settings as well. However, a variety
of more complex settings remain open.

Broadly though, the takeaway remains: by integrating causal learning as a goal
alongside prediction in designing allocation policies, it is often possible to get much
of the best of both worlds in practice. Our hope is that these kinds of techniques
enable much more widespread use of rigorous program evaluation strategies by
lowering the cost (in terms of foregone targeting) to running randomized trials.
While prediction is one way of encoding goals for allocation, we believe that many
settings will benefit at least as much from better, faster, and more widely available
evidence about “what works”. Is is tempting for algorithm designers to focus on the
details of allocation, trying to optimize the individual-level match between people
and potential interventions. But this focus should not crowd out our ability to learn
and improve interventions over time, ultimately improving the quality of services
available to everyone.
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