Botticelli: A Supply Chain Management Agent
Designed to Optimize under Uncertainty

MICHAEL BENISCH, AMY GREENWALD, IOANNA GRYPARI, ROGER LEDERMAN,
VICTOR NARODITSKIY, and MICHAEL TSCHANTZ
Brown University

The paper describes the design of the agent BOTTICELLI, a finalist in the 2003 Trading Agent
Competition in Supply Chain Management (TAC SCM). In TAC SCM, a simulated computer
manufacturing scenario, BOTTICELLI competes with other agents to win customer orders and
negotiates with suppliers to procure the components necessary to complete its orders. We formalize
subproblems that dictate BOTTICELLI’s behavior. Stochastic programming approaches to bidding
and scheduling are developed in attempt to solve these problems optimally. In addition, we
describe greedy methods that yield useful approximations. Test results compare the performance
and computational efficiency of these two techniques.

Categories and Subject Descriptors: 1.2.11 [Artificial Intelligence]: Intelligent agents

Additional Key Words and Phrases: Bidding agents, Trading agents, Supply chain management

1. INTRODUCTION

A supply chain is a network of autonomous entities, or agents, engaged in pro-
curement of raw materials, manufacturing—converting raw materials into finished
products—and distribution of finished products. The Trading Agent Competition
in Supply Chain Management (TAC SCM) is a simulated computer manufacturing
scenario in which software agents tackle complex problems in supply chain manage-
ment. This paper describes the structure of Brown University’s agent BOTTICELLI,
a finalist in TAC SCM 2003.

TAC SCM agents face uncertainty about the future, but they must make their
decisions before that uncertainty is resolved: e.g., agents procure raw materials
and manufacture finished products before customer orders arrive. BOTTICELLI
handles this uncertainty using stochastic programming techniques. We formulated
a stochastic program, the solution of which is an optimal manufacturing and dis-
tribution schedule in TAC SCM. Moreover, we generalized this approach in search
of optimal bidding policies that balance the tradeoff between maximizing profits,
by placing high bids, and maximizing the likelihood of winning multiple orders, by
placing low bids.

Authors’ address: Box 1910, Providence, RI 02912.

This research was partially supported by NSF Career Grant #I11S-0133689.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2004 ACM 1529-3785/2004,/0700-0029 $5.00

ACM Transactions on Computational Logic, Vol. 4, No. 3, 02 2004, Pages 29-37.

30 . Benisch et al.

Suppliers

Other Agents 3 Bidding Module Component
|

£ Inventory
L o) B
Bid Prices| = |
—— 3 ’_‘ ’_‘ |
! = Scheduling Module RFQs & Orders

5 Procurement w c
c
@

|

l
Components
|

!

!

Module |, Offers |
I

EEEE

I
|
| I
: : ' Factory |
! AN Delivery Module| Product !
! Inventory .
| |
Customers ! H H ﬂ .
I
.% [|
B w \)
i Botticelli |

Fig. 1. Botticelli: A Modular Design

Inputs Outputs

Product Pricing Model Procurement Schedule: set of Supplier RFQs and Orders
Component Cost Model | Bidding Policy: map from Customer RFQs to Prices

Set of Supplier Offers Production Schedule: map from Cycles to SKUs

Set of Customer RFQs Delivery Schedule: map from SKUs to Customer Orders
Set of Customer Orders
Procurement Schedule
Component Inventory
Product Inventory

Fig. 2. TAC SCM Decision Problem

2. AGENT ARCHITECTURE

Each simulated TAC day represents a decision cycle for an agent, during which time
the agents must solve four problems: procurement, bidding, production scheduling,
and delivery scheduling. The procurement problem involves communicating with
suppliers via RFQs, and selecting components to purchase given offers in response
to these RFQs. The bidding problem is to decide how to assign offer prices to each
customer RFQ. The production scheduling problem is to decide how many of each
SKU to assemble each day. The delivery scheduling problem is to decide which
orders to ship to which customers, using product inventory. The objective in all of
these problems is to maximize expected profits: revenue less costs less penalties. A
high-level description of the TAC SCM decision problem is presented in Figure 2.
An artifact in the design of TAC SCM 2003 (namely, negligible component prices
on day 1), resulted in us placing little emphasis on procurement. Rather, we focused
on the development of solutions to the bidding, scheduling, and delivery problems.
High-level descriptions of the three problems are given in Figure 3. These three
problems are highly interconnected. Indeed, an optimal solution to the production
scheduling problem yields an optimal solution to the delivery scheduling problem,
since revenues depend on which orders are successfully delivered to their respec-
tive customers. Moreover, an optimal solution to the bidding problem yields an
optimal solution to both scheduling problems, since bidding decisions depend on

ACM Transactions on Computational Logic, Vol. 4, No. 3, 02 2004.

Botticelli: An SCM Agent : 31

Production Scheduling Bidding
Inputs: Inputs:
Delivery Scheduling Bidding Policy Product Pricing Model
.. Set of Customer RFQs
Inputs: Product Pricing Model
. Set of Customer Orders
Production Schedule Set of Customer Orders
Procurement Schedule
Set of Customer Orders Procurement Schedule
Component Inventory
Product Inventory Component Inventory
Product Inventory
Output: Product Inventory Outputs:
Delivery Schedule Outputs: puts:

Bidding Policy
Production Schedule
Delivery Schedule

Production Schedule
Delivery Schedule

Fig. 3. TAC SCM Mini-Decision Problems

manufacturing and distribution constraints: too few winning bids lead to missed
revenue opportunities; too many winning bids lead to late penalties. BOTTICELLI’s
architecture was designed with these relationships in mind, and thus the bidding
module envelops the scheduling module, which in turn envelops the delivery module
as shown in Figure 1.

The flow of information through the agent is as follows: Each day the modeling
module receives information about other agents’ actions on the previous day as
well as information about the offers the bidding module submitted and the orders
that resulted from those offers. The modeling module uses this information to up-
date its models and passes an updated model to the bidding module. The bidding
module uses the new model to produce an offer for each of the day’s RFQs. The
offer prices are determined with the aid of the scheduling module. When invoked,
the scheduling module learns from the procurement module the quantity of each
component that is expected to be in inventory on any particular day. It then deter-
mines how to allocate machine cycles to make products for existing orders and likely
future orders. The scheduling module relies on the delivery module to determine
how to allocate product inventory to existing orders and likely future orders. After
the bidding, scheduling, and delivery modules finalize their decisions, the procure-
ment module sends to suppliers RFQs for any necessary additional components and
orders based on the previous day’s offers.

3. BIDDING: A STOCHASTIC PROGRAMMING APPROACH

We now define the delivery scheduling, production scheduling, and bidding prob-
lems. The delivery scheduling problem can be solved optimally in TAC SCM using
an integer linear programming solver. The production scheduling problem can be
formulated as a stochastic program, and an optimal solution can be approximated
using sampling techniques such as sample average approximation [Kleywegt et al.
2001] (see [Benisch et al. 2004]). Similarly, the bidding problem can be formulated
as a stochastic program, but the aforementioned approximation technique does not
produce useful results in a reasonable amount of time because of the vast num-
ber of bidding policies. Instead, we propose a coarser approximation based on the
expected value method [Birge and Louveaux 1997].

ACM Transactions on Computational Logic, Vol. 4, No. 3, 02 2004.

32 . Benisch et al.

In order to describe our proposed solution to the bidding problem, we rely on
a solution to the production scheduling problem. Similarly, our proposed solution
to the production scheduling problem relies on a solution to the delivery schedul-
ing problem. Thus, we describe these subproblems before describing the bidding
problem and our approximate solution.

3.1 Delivery Scheduling

The delivery scheduling problem is one of allocating SKUs in product inventory to
customer orders, given a production schedule (see Figure 3, LHS). The objective
is: maximize revenue and minimize penalties. The important resource constraint
concerns product inventory: The total quantity of SKU j associated with orders
delivered by day ¢ cannot exceed the total inventory of SKU j produced by day
t — 1 plus any initial inventory.

3.2 Expected Production Scheduling

In the production scheduling problem, the objective is to allocate cycles to SKUs not
only to fill existing customer orders, but in addition to fill offers—customer RFQs
equipped with bid prices—which may or may not become orders. We model this
uncertainty using a pricing model that associates probabilities with offers: offers
with low bid prices are assigned high probabilities, whereas offers with high bid
prices are assigned low probabilities. These probabilities represent one of the key
sources of uncertainty in TAC SCM. (See Figure 3, center.)

To handle this uncertainty, this problem can be formulated as a stochastic pro-
gram (see [Benisch et al. 2004]). In solving this stochastic program, we show that
the method of sample average approximation (SAA) [Kleywegt et al. 2001] out-
performs the expected value method [Birge and Louveaux 1997] on this problem.
Nonetheless, we rely on the expected value method in our implementation of BoT-
TICELLI because it easily generalizes to bidding, whereas SAA does not.

The objective in production scheduling is to maximize profits from orders and
expected profits from offers while minimizing penalties. The constraints are those
of simple scheduling, but the product inventory resource constraint is updated to
handle offers: The total quantity of SKU j associated with orders or expected offers
delivered by day ¢ cannot exceed the total inventory of SKU j produced by day
t — 1 plus any initial inventory.

3.3 Bidding

The objective in the bidding problem is to find an optimal bidding policy. We solve
this problem by extending the solution to the production scheduling problem based
on the expected value method. In production scheduling, all RFQs are equipped
with bid prices, which are constants. In the bidding problem, the prices at which to
offer to fill RFQs are variables. Once prices become variables rather than constants,
the objective function is no longer linear. (In fact, in our formulation, it is not even
quadratic.) Thus, in our implementation we discretize prices to recover a linear
formulation. Details are described in a longer version of this paper.

ACM Transactions on Computational Logic, Vol. 4, No. 3, 02 2004.

Botticelli: An SCM Agent : 33

4. BIDDING: A HILL-CLIMBING APPROACH

In the preliminary rounds, BOTTICELLI relied on a hill-climbing bidder, which suc-
cessively adjusts bid prices according to the results of a scheduler. At a high-level,
the bidder is initialized with some set of bid prices; given these prices, an approxi-
mately optimal production and delivery schedule is found; based on the results of
the scheduler, bid prices are tweaked. The goal of this hill-climbing algorithm is
to fill our production schedule, which we assume to be positively correlated with
maximizing expected profits. A similar bidding solution is presented in [Pardoe
and Stone 2004].

In a preprocessing step, we schedule only orders, no offers. As long as all orders
can be scheduled for delivery, we proceed with the hill-climbing bidder.

It is crucial to our approach that the scheduler make use of the probabilities of
winning each offer: the scheduler must schedule offers based on expected quantities.

We initialize bids to prices at which, according to our model, we will win every
RFQ with certainty. At these initial prices, if the scheduler cannot fit every order
and RFQ into the schedule, those RFQs which are not deemed profitable enough to
include in the schedule at their current prices form a natural set of RFQs for which
to raise prices. Indeed, we increase the prices of these RFQs, thereby decreasing
their winning probabilities. In the next iteration, the scheduler, which schedules
according to expected quantities, may be able to schedule these RFQs for produc-
tion. Prices are increased (i.e., probabilities are decreased) until all RFQs can be
scheduled. This process is guaranteed to converge, since the winning probability of
RFQs above their reserve prices is zero, yielding a corresponding expected quantity
of zero.

4.1 Scheduling: A Greedy Approach
Our greedy scheduler is passed both orders and offers, which it sorts as follows:

—Orders are placed before offers, since offers might not be won.
—Orders are sorted by ascending due date, then by descending penalty.
—Offers are sorted by descending profit per cycle (p,/c;, where j = f,), then by
ascending due date, and lastly by descending penalty.

Note that offers are not sorted by probability. We experimented with this ordering,
but profitability proved to be more important than probability.

Let o be the current order or offer and let j be o’'s SKU. The greedy scheduler
addresses the orders and offers in sorted order as follows:

(1) Schedule backwards from o’s due date. That is, start by scheduling as much
as possible of SKU j on the day o is due. If more needs to be scheduled, then
schedule as much as possible on each successively earlier day until either no
more is needed or the current day is reached.

(2) If more of SKU j still needs to be produced, allocate as much as possible from
product inventory.

(3) If still more of SKU j is needed, schedule forwards from o’s due date until either
all of order o is scheduled or the cancellation date is reached.

(4) If the cancellation date is reached, then cancel all scheduled production of SKU
j for o.

ACM Transactions on Computational Logic, Vol. 4, No. 3, 02 2004.

34 . Benisch et al.

Note that if o’s due date is the current day, then there is no time to produce any
more of SKU j. In this case, the greedy scheduler begins at step 2.

5. EXPERIMENTAL RESULTS

The mathematical programming techniques we employ rely on some model of our
agent’s environment. Rather than model each competing agent’s strategic behavior
individually, we collapse all agents’ behaviors into one model, and optimize with
respect to this model. In essence, we use decision-theoretic optimization techniques
to approximate solutions to game-theoretic problems.

Not only is the TAC SCM environment uncertain, it is also dynamic. Thus,
dynamic optimization models and techniques might be applicable (e.g., MDPs),
but to optimize with respect to all possible futures is clearly intractable. Instead,
we rely on an heuristic we call the triangle method, by which we save production
cycles on future days for future RFQs, particularly if prices are predicted to increase.

Before describing our experimental setup and results, we describe our modeling
assumptions and the triangle heuristic, on which the former depend.

5.1 Modeling

The modeling module predicts the relationship between the bid price of an offer
and the probability of winning that offer. There are several sources of information
available for modeling this relationship. In our implementation, we utilize two: the
first is a report provided by the server each day with the maximum and minimum
closing prices for each SKU on the previous day; the second is BOTTICELLI’s past
offer prices and the orders that resulted. Our modeling module is concerned only
with price and probability relationships for each SKU, rather than for each RFQ,
since maximum and minimum prices are SKU-specific.

For each SKU, the modeler plots the minimum and maximum prices from the
previous day at probabilities 1 and 0, respectively. Intuitively, low prices are likely
to be winning prices, while high prices are likely to be losing prices. In addition, for
each of the previous d days, BOTTICELLI’s average offer prices are plotted against
the ratio of the number of offers won to the number of offers issued. In total, our
modeling module is provided with d + 2 points, which it fits using a least-squares
linear regression. This linear cdf (price vs. probability graph) is adopted as the
model that is input to the bidding module. (See Figure 4.)

By experimentation, we found the value of 5 to be a good choice for d. This
value allowed BOTTICELLI to be responsive enough to the changes in price that
often accompanied another agent receiving a shipment of supplies, but prevented
any drastic overreactions. We experimented with using additional information to
create more stable models, such as providing weights for points based on the number
of offers they represented, and maintaining the average of the d previous days’
minimum and maximum prices. These methods, however, did not respond well to
price jumps that were typical of the 2003 TAC SCM competition.

5.2 The Triangle Heuristic

BOTTICELLI’s scheduling module relies on the following heuristic: in scheduling
for multiple days of production, do not use all cycles on all days, but rather save
production cycles on future days for future RFQs as depicted in Figure 5.

ACM Transactions on Computational Logic, Vol. 4, No. 3, 02 2004.

Botticelli: An SCM Agent : 35

1.00 =

0.90 +

080 +

0.70 + N

0.60 +

0.50 +

0.40 +

0.30 T ~

0.20 + I

0.10 + ™~

0.00 t t t u
1200 1400 1600 1800 2000

*

Fig. 4. Price vs. Probability for a SKU. Diamonds are data points from offers sent during the past
d days. Squares are data points from the previous day’s minimum and maximum prices.

Fig. 5. On day d, only Cy = W cycles are made available to the scheduler. Cycles
outside the triangle are reserved for future orders. D is number of days of production in the
schedule. C' is the daily production capacity.

This heuristic is based on two assumptions. First, higher revenues can be earned
by winning the same quantity of RFQs over multiple days, rather than winning a
large quantity of RFQs on one day, since, according to our model, an agent can
only win a large quantity on one day by bidding a very low price. Second, the
“character” RFQs of tomorrow will not differ significantly from the RFQs of today,
since all RFQs are drawn from a uniform distribution. Thus, one can assume that
future RFQs will not be significantly better or worse than the today’s RFQs in
terms of quantity, due date, etc.

If, however, a change in the number of RFQs is predicted, BOTTICELLI saves
more (fewer) cycles if the number of RFQs is predicted to increase (decrease), since
prices tend to increase (decrease) accordingly.

ACM Transactions on Computational Logic, Vol. 4, No. 3, 02 2004.

36 . Benisch et al.

Parameter | Range

Price [$1600, $2300]
Quantity [1, 20]

SKU 1, 16]

Penalty [6%, 15%] of Price

Table I. Uniform Distribution Ranges

Profits Deliveries Price Penalty
HG | $7,781,100 6,847 $1,193 | $505,610
HE | $8,019,600 7,286 $1,095 | $285,950
EB | $9,600,900 7,860 $1,222 | $113,660

Table II. Experimental Results: Profits, Deliveries, Average Prices, Penalties

5.3 Experimental Setup

We designed experiments to compare the performance of three bidding algorithms,
one based on the stochastic program, one hill-climbing bidder, and one blend of
the two. To isolate the effects of these algorithms, we relied on models that could
perfectly predict the likelihood of winning any RFQ at any price.

Our experiments consisted of 20 day trials, which proceeded as follows: On each
day, the algorithms received a randomly generated set of RFQs drawn from a distri-
bution similar to that of the TAC SCM game specification. Specifically, 300 RFQs
were generated at random, with parameters uniformly distributed in the ranges
shown in Table I. Given these RFQs, the algorithms produced a bidding policy
as well as production and delivery schedules for D = 10 days.! Based on its bid
prices and the corresponding probabilities, an algorithm won orders for some of
the RFQs. The algorithms were then responsible for producing and delivering the
products for these RFQs before their due dates or they were penalized according
to the rate specified in the RFQ. The tests continued in this fashion for 20 days;
this number was long enough to allow the algorithms to distinguish themselves, but
short enough to allow several hundred iterations.

In order to mitigate any start effects in our experiments, the algorithms were
initialized with the same set of 150 customer orders (thus, the first day looked like
all other days). We made the simplifying assumption that all algorithms had an
infinite component inventory, which, as alluded to earlier, is an artifact of the TAC
SCM game design in 2003.

5.4 Experimental Results

The algorithms included in our experiments were the hill-climbing bidder with a
greedy production scheduler (HG), the hill-climbing bidder with an expected pro-
duction scheduler (HE), and the expected bidder (EB), which used its own schedule
for production. Both of the hill-climbing bidders utilized a greedy scheduler to eval-
uate candidate bidding policies, as such policies needed to be evaluated hundreds
of times. (The greedy scheduler completed in .01 seconds, on average, whereas the

1In TAC SCM, 10 days are sufficiently many to produce all current orders and RFQs on time.

ACM Transactions on Computational Logic, Vol. 4, No. 3, 02 2004.

Botticelli: An SCM Agent : 37

$9,601k

$8,020k
$7,781k

HG HE EB

Fig. 6. Mean Profit-95% Confidence Intervals

expected production scheduler completed in 1 second.) However, we allowed one of
the hill-climbing bidders to utilize an expected scheduler for production scheduling
only. Our hypothesis was that the expected bidder with built in scheduling and
delivery modules would out perform all of the others, as it would be capable of
performing a more global optimization while solving the bidding problem.

Relevant statistics of the 500 trials are given in Table II. The mean profits of each
algorithm over 20 days with 95% confidence intervals are shown in Figure 6. These
results validated our hypothesis. The expected bidder outperformed both instances
of the the hill-climbing bidders in every category in Table II. The 95% confidence
intervals shown in Figure 6 reveal that the difference in profits is statistically sig-
nificant. The addition of the expected scheduling algorithm to the hill-climbing
bidder helped it to achieve fewer penalties by improving the production scheduling
solutions; however, the lack of a global bidding strategy still crippled its abilities.
It seems that the expected bidder produced results that were close to optimal, since
its total penalty was relatively small and it managed to utilize its factory at nearly
full capacity each day without wasting many finished products.

6. CONCLUSION

Following [Kiekintveld et al. 2004], we identify three key issues in supply chain
management that are modeled in TAC SCM: (i) uncertainty about the future;
(ii) strategic behavior among the entities; and (iii) dynamism—the temporal nature
of the chain. BOTTICELLI, a finalist in TAC SCM 2003, focused on the first of
these three issues. Indeed BOTTICELLI’s expected bidder proved to be an effective
technique for addressing the uncertainty in the TAC SCM market economy. In
future work, we plan to validate (or invalidate) our modeling technique and the
triangle heuristic, which were designed to address the strategic and dynamic aspects
of TAC SCM, respectively.

REFERENCES

BENISCH, M., GREENWALD, A., NARODITSKIY, V., AND TSCHANTZ, M. 2004. A stochastic pro-
gramming approach to TAC SCM. In ACM Conference on Electronic Commerce. To Appear.

BIRGE, J. AND LOUVEAUX, F. 1997. Introduction to Stochastic Programming. Springer, New York.

KIEKINTVELD, C., WELLMAN, M., SINGH, S., ESTELLE, J., BEYCHIK, Y. V., SONI, V., AND RUDARY,
M. 2004. Distributed feedback control for decision making on supply chains. In Fourteenth
International Conference on Automated Planning and S cheduling. To Appear.

KLEYWEGT, A., SHAPIRO, A., AND HOMEN-DE-MELLO, T. 2001. The sample average approxima-
tion method for stochastic discrete optimization. SIAM Journal of Optimization 12, 479-502.

PARDOE, D. AND STONE, P. 2004. TacTex-03: A supply chain management agent. SIGecom
Exchanges 4, 3 (February), In this issue.

ACM Transactions on Computational Logic, Vol. 4, No. 3, 02 2004.

