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This paper presents some key strategies applied in jackaroo agent. Most of the strategies are
rooted in theoretical modelling and statistic analysis of TAC-03 SCM game. We model the product
market with a variation of Cournot game and specify the component market by constant-supply
model. We outline the basic theory and algorithms dealing with component procuring, product
pricing, production scheduling and price forecasting.
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1. INTRODUCTION

Trading Agent Competition (TAC) has been successfully run for four years since
it was introduced by Wellman and Wurman [Wellman and Wurman 1999]. This
annual activity offers “an international forum designed to promote and encourage
high quality research into the trading agent problem”. The first three games pro-
ceeded with a travel agency scenario (TAC Classic). In year 2003 a new game
scenario of Supply Chain Management (SCM) was introduced by CMU and SICS
[Arunachalam et al. 2003]. This scenario specifies a supply chain integration of
Personal Computer(PC) marketplace. Participants are required to design a trad-
ing agent capable of sourcing of components, manufacturing of PC’s and sales of
products. The proposed game provides a competitive environment to stimulate
solutions to the problems involved in supply chain integration and multiple market
e-trading. About twenty teams from different universities and research institutes
around the world were attracted to the challenge and competed each other in 2003.
As one of the participants, jackaroo team, representing University of Western Syd-
ney, contributed an agent to the tournament. The team received the third place in
the qualifying round, the first in the seeding round 1 and the fourth in the seeding
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round 2. Unfortunately it was not able to proceed with the final round due to net-
work problems at the conference venue. Nevertheless the agent has demonstrated
its contributions of several leading strategies to the competition.

This paper describes the key strategies adopted in jackaroo agent. Most of the
strategies are rooted in theoretical modelling and statistic analysis of the game.
We model the product market with a variation of Cournot game and specify the
component market by constant-supply model. We will present the basic theory
and algorithms dealing with component procuring, product pricing, production
scheduling and price forecasting.

2. TAC SCM SCENARIO MODELLING

In this section, we present an abstract model for TAC SCM game. The game
scenario specifies a typical supply chain with three nodes: component suppliers,
PC manufacturers and end customers, linked with two marketplaces: component
market and PC product market[Arunachalam et al. 2003].

suppliers
component market⇔ manufacturers

product market⇔ customers

We will model the downstream market as a Cournot oligopoly and the upstream
market with constant-supply model.

2.1 Product market model

The SCM product market is a typical oligopoly where the manufacturers (agents)
choose quantities supplied to maximize their profit. Since each manufacturer’s pay-
off structure is common knowledge to each agent, the market can be easily specified
by Cournot model with a slight variation[Mendenhall et al. 1986]. To simplify the
exposition, we assume that all PC products are homogeneous with the same market
price and the cost of production for each manufacturer is the same. Obviously the
model is also applicable to single product analysis.

In general, we assume that there are n manufactures competing the market. Let
qi denote the quantity of PC produced by manufacturer i and Q the aggregate

quantity on the market, that is, Q =
n∑

i=1

qi. Assume that the market demand (ex-

pressed by customer’s RFQs) for all products is Dm. If the aggregate quantity on
the market is no more than the market demand, we assume that the market-clearing
price of the product is constant at p0

1. If the aggregate quantity is larger than the
market demand, the market-clearing price is decreasing with over level of products
on the market until the price becomes 0. Let P (Q) denote the market-clearing price
over aggregate quantity Q. Then

P (Q) =
{

p0, if Q ≤ Dm;
Γ(Q−Dm), otherwise.

where Γ(Q) is a monotonous decreasing function, called price descent function.
Specially, if the price decline is linear, the price function can be further simplified:

1If market demand is more than supply, agents can normally get customer orders with reserve
price.
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P (Q) =





p0, if Q ≤ Dm;
p0 − γ(Q−Dm), if Dm < Q ≤ p0

γ + Dm;
0, otherwise.

where γ is called the price descent coefficient (γ > 0). Based on the analysis in
Section 3.2, we will assume that the price decline is linear.

Let δ be the unit cost of the product and c0 be the base cost of each manufac-
turer. The cost for each manufacturer to produce q products is then:

C(q) = δq + c0, where δ and c0 are non-negative.

For each manufacturer i, a strategy, qi, is the quantity the manufacturer chooses
to produce. A strategy profile, S, is a decision of production by all manufactories:
(q1, · · · , qn), where qi ≥ 0 for any i.

The profit of each manufacturer i (payoff function) can then be written as:

πi(S) = qiP (Q)− C(qi) = qiP (Q)− δqi − c0.

If we assume that the price function is linear, the payoff function can be further
specified as the following:

πi(S) =





(p0 − δ)qi − c0, if Q ≤ Dm;
(p0 − δ)qi − γqi(Q−Dm)− c0, if Dm < Q ≤ p0

γ + Dm;
−δqi − c0, otherwise.

Therefore a strategy profile (q∗1 , · · · , q∗n) is a Nash equilibrium if, for each player
i, q∗i solves the optimization problem:

max
0≤qi<∞

πi(q∗1 , · · · , q∗i−1, qi, q
∗
i+1, q

∗
n)

Theorem 2.1. Assume that the product descent function Γ is linear. If p0 > δ,
there exists a unique Nash equilibrium (q∗1 , · · · , q∗n) to the problem where if Dm ≥
np0−δ

γ , q∗i = 1
nDm; if Dm < np0−δ

γ , q∗i = 1
(n+1) (

p0−δ
γ + Dm) for each i.

Due to space limitation, we omit the proof of the theorem2. This theorem shows
that the SCM product market is not a standard Cournot oligopoly. Since the
market price is capped with customer reserve price, the manufactures can not fully
control the market price with market supply.

Example 2.2. Consider a PC marketplace with n suppliers. Assume that p0 =
2000, γ = 2.0, δ = 1000, c0 = 0 and Dm = 2000. Then the market-clearing price
function is

P (Q) =





2000 if Q ≤ 2000;
6000− 2Q if 2000 < Q ≤ 2500;
0 otherwise.

For each manufacturer i, its profit is decided by the following function:

2A proof of the theorem will be presented in a sequent paper[Zhang 2004].
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πi(S) =





1000qi if qi ≤ 2000− ∑
k 6=i

qk;

5000qi − 2q2
i − 2qi

∑
k 6=i

qk if 2000− ∑
k 6=i

qk < qi ≤ 2500− ∑
k 6=i

qk;

−1000qi otherwise.

The following table lists the equilibrium production in case of no more than 6
manufacturers.

Number of Equilibrium Aggregate Market
Manufacturers Production Production Price

1 2000 2000 2000
2 1000 2000 2000
3 666 1998 2000
4 500 2000 2000
5 417 2085 1830
6 357 2142 1716

The last line shows a typical situation in TAC’03 SCM game. According to the
game specification, the average base cost of each PC product is $2000. If an agent
orders components on day 0, the actual average cost of each PC is half of base price,
so it is $1000. The customers’ reserve price for each PC product is between 75%
to 125% of the base PC cost. Thus the capped market price of each PC product
is averagely about $2000. The above example shows that if the average market
demand is no less than 2000 PCs per day, an agent should make full use of its
production capacity (see more analysis in Section 3).

We remark that in the real TAC SCM game, both the base price p0 and the price
descent coefficient γ vary with market demands. According to the statistic analysis
on the game data in TAC-03 SCM final, p0 is a non-linear function of market
demand and price descent coefficient can be approached by a linear function of
market demand(see [Zhang 2004] for more details).

2.2 Component Market Model

Different from the product market, the market of components is a typical constant-
supply market. Market supply is fixed with only a small reverting random walk.
Each supplier of components has an allocated output quota for each component
type it supplies, called nominal capacity, denoted by Cnominal. A supplier accepts
orders assuming that it will have Cnominal products available every day for each
component. The price of the component is determined by its market demand capped
with a base price, specified in the game specification.

Consider a single component. Let Cordered(d, d′) denote the total ordered amount
of the component up to day d which are requested for delivery on day d′ (where
d′ > d). Specifically, Cordered(0, d′) = 0 for any d′ since no any component order can
be made on day 0 according to TAC SCM specification. Then the total available
capacity from day d to day d′ will be:

Cavailable(d, d′) =
d′−1∑
j=d

(Cnominal − Cordered(d, j))

Note that the nominal capacity on day d′ is not included since it is assumed that
products can only be shipped on the next day after they are produced.
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With all the information, the component supplier decides its product price by
using the following formula:

p(d, d′) = pbase(1− δp
Cavailable(d, d′)

(d′ − d)Cnorminal
)

where p(d, d′) denotes the day d’s price for the product requested for delivery on
day d′; pbase is its base price; δp is a price discount factor, which is assumed to be
a fixed value at 50% in TAC-03 SCM specification.

From the pricing function of components, we can easily see that the earlier an
order for a component is placed, the more available capacity for the component is
left, and the cheaper the component will be. Since it is not allowed Cavaliable to be
negative, the discount of component price is always between 0 to 50% on the base
price. Notably, ordering components on day 0 can always receive the top discount
of 50%, i.e., p(0, d′) = 0.5pbase for any d′ > 0. This gives every agent a great
bargain. Unfortunately this setting led the component market into an unintended
situation in TAC-03 competition (see more analysis in Section 3.1).

3. STRATEGIZING AGENTS

We are now ready to present some key strategies that have been applied in the
implementation of jackaroo agent.

3.1 Component Procuring

The component market model has suggested that ordering components earlier would
reduce product cost up to 50%. One successful strategy adopted by jackaroo agent
was that of ordering all components for a whole game at the very beginning of the
game.

As we know, each manufacturer is capable of producing around 360 PCs per day,
which requires 90 units of each type of CPU and 180 units of each type of the
other components. Since the number of RFQs an agent can send to each supplier
is limited (maximal ten RFQs per supplier per day), we package several day’s
component usage into one RFQ (about 270 to 540 for CPUs and 540 to 1080 per
RFQ). With this approach, we can order all the components for whole game in the
first few days. Figure 1 shows a result by using the strategy during the early state
of TAC-03 game (game 418 on tac6).

In this game, we ordered 213 day’s components in the first 8 days. The due date
of each order was set a little bit earlier than it is actual needed in order to avoid
possible delay with every 5 day’s interval. By using this approach, we only paid
63.66% of full price for all components.

This strategy was only used in the qualifying round before we realized that order-
ing components on day 0 would received the top discount of 50%. From the seeding
round 1, we changed the strategy to order all components on day 0. Sooner after
most of the other competitors applied the similar strategy as well. Unfortunately
this caused the component market out of functioning. Due to the limitation of sup-
plier’s production capacity, component delay became the most headache of every
agent. The result of a game heavily depended on the random arrival of components.
The game became less interesting.
ACM SIGecom Exchange, Vol. 4, No. 3, 2004.
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Fig. 1. An example of component procurement scheduling (data from TAC SCM game 418 on
tac6).

There are numbers of remedies to the problem. One idea is to randomize the price
discount on day 0 so that ordering components on day 0 does not necessarily gain
an advantage. Another idea is to price components on RFQed quantity rather than
on ordered quantity. Additionally, raising bank interest would be also a solution to
the problem. We are now testing these possible solutions and hopefully can have
some suggestions available for TAC-04.

3.2 Price coefficient learning

The decision of daily production is one of the biggest challenges faced by every
SCM agent designer, especially if components are ordered at the very beginning.
The product model provides a guideline for such a decision-making. Once we have
a price function P (Q), Theorem 1 would suggests a production quantity for each
manufacturer. However, several problems need to be solved before it can be actually
used:

—How many factors affect the market-clearing price?
—Whether the market-clearing price of each product is linear correlated to its

redundant supply in the PC market?
—If it is linear, how to determine the price descent coefficient γ?

Besides market demand and aggregate quantity of products in the market, there
are several other factors affecting the market product price: agent’s pricing strategy,
stages of a game, component supply, and so on. Nevertheless, market demand and
market supply are still the most significant factors affecting market prices. Figure
2 shows a statistic result that produced by an off-line learning program:

The data picked up from game 427 on tac5. To reduce the influences of other
factors, we ignored the first and last 50 day’s data and average every five day’s
statistic results. Instead of a use of multiple linear regression, we simply consider
the correlation between the following two variables:

—price descent (the difference between customer’s reserve price p0 and market-
clearing price P (Q)),

—redundant market supply (the difference between product supply Q and market
demand Dm).
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Fig. 2. Correlation between market price and market supply of PC products(data from TAC SCM
game 427 on tac5

The statistic result shows a highly linear correlation between these two variables.
The coefficient of correlation is up to 0.8357. The associated price decline coefficient
γ is 2.0496. This encouraged us to use linear method to approximate price function.
With the linear regression method, we can easily estimate the price decline coeffi-
cient γ, which could range from 0.1 to 10, depending on market demands, different
competitors and stages of a game. We will present more statistic results and detail
algorithms in a sequent paper.

Interestingly, the product market model implies that an agent should maximize
its use of production capacity if market demand is above average level of 2000
PCs per day. Considering some unproductive days, this level can be even lower.
According to our observation, if the average market demand is higher than 1500,
maximizing production capacity is always profitable if components can be obtained
at a good price.

We would like to remark that a linear approximation of price function does not
imply the price descent coefficient to be constant during a whole game. In fact, the
price descent coefficient γ is a function of time. Normally the abstract value of the
coefficient would be much smaller than normal in the early stage of a game because
most agents wait for components (less market supply) and much higher at the very
end since most agents tend to dump their goods before the game ends.

3.3 Production Scheduling

There are many of tradeoffs faced by TAC SCM agent designers. One of them is to
decide which types of products should be produced for inventory3. On one hand, one
should produce more profitable products to keep a good inventory of these products.
On the other hand, a balance of products in inventory should be maintained to
maximize the ability of bidding customer orders. In the implementation of our
agent, we adopted a dynamic weighting approach to production scheduling.

Let v(k) denote the current inventory of product k (0 ≤ k < 16) and vmax be
their maximal value. We first calculate the inventory weight w1(k):

w1(k) = (vmax − v(k))/(
16∑

i=0

(vmax − v(k)))

3This wasn’t applicable for those agents who never produce inventory.

ACM SIGecom Exchange, Vol. 4, No. 3, 2004.



Strategic Trading Agents via Market Modelling · 53

Next, we calculate the market profit weight. Let pm(k) and c(k) be the current
market price and component cost of product k, respectively. The profit weight
w2(k) is defined as follows:

w2(k) =

{
0, if pm(k)− c(k) ≤ 0;
(pm(k)− c(k))/(

∑
pm(i)−c(i)>0

(pm(i)− c(i))), otherwise.

Finally we combine these two weights with a balance coefficient λ, which was
learnt from previous games:

w(k) = λw1(k) + (1− λ)w2(k), k = 0, · · · , 16

The actual quantity produced for inventory is then

q(k) =
w(k) ∗ rclycles(k)

ucycles(k)

where rcycles represents the current remaining cycles after producing all the out-
standing orders and ucycles(k) the required cycles per unit of product k.

3.4 Price forecasting

According to TAC-03 SCM specification, customer’s reserve price(cap price) was
setup as 75% to 125% of its base cost. This means that there is no much margin
between baseline product cost and its market value. Manufacturers have to try
their best to reduce their component cost. Since there is no cost for inventory
and bank interest is relatively low, one can stock a large amount of components
when their prices are low. Therefore finding an appropriate method to predict the
market price of components is essential to agent design. We tested three different
forecasting methods: linear regression, moving-averaging and exponential smooth-
ing[Mendenhall et al. 1986]. Experiments show that the classical linear regression
is the most inefficient way among the others, which could produce up to 30% of
error by means of Mean Absolute Deviation(MAD), while the exponential smooth
model can normally produce a high quality of predicting. Figure 3 shows a snap-
shot of price prediction window produced by our program when we test different
forecasting models.

The green line (the third one at the beginning) represents the actual value of the
predicted component price. The yellow line (the first one), blue line (the second
one) and red line(the forth one) show the predicting values with linear regression,
second-order smoothing and third-order smoothing, respectively. The maximal
MAD of forecasting error is 28.3%, 12.5% and 11.0%, respectively.

We used the standard algorithm for calculating regression line, which can be
found in any statistic book. The algorithms for high-order smoothing forecasting
come from [Mendenhall et al. 1986]. Briefly, suppose that we have the observations
of price of a component: p1, p2, · · · , pd for a time series from day 1 to day d and
we are going to predict the price on day d + i. The second-order smoothing model
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Fig. 3. Comparison on forecasting models for component price.

gives a predicting value of the price as:

p̂d+i = (2 +
αi

1− α
)Sd − (1 +

αi

1− α
)Sd(2)

where α is the smoothing constant; Sd = αpd + (1 − α)Sd−1; Sd(2) = αSd + (1 −
α)Sd−1(2).

The third-order smoothing forecasting model gives a value as:

p̂d+i = (6(1− α)2 − (6− 5α)αi + α2i2) Sd

2(1−α)2

−(6(1− α)2 + 2(5− 4α)αi + 2α2i2) Sd(2)
2(1−α)2

+(2(1− α)2 + (4− 3α)αi + α2i2) Sd(3)
2(1−α)2

where Sd(3) = αSd(2) + (1− α)Sd−1(3).

Interestingly, the actual value of component price mostly goes between the values
given by the second-order model and third-order model, respectively (see Figure
3). Therefore, in the implementation of our agent, we used the mean value of the
second-order prediction and third-order prediction. We call the approach 21

2 -order
smoothing model. The smoothing constant we used is a value between 0.6 and
0.8. To get the component price update, we send RQFs to suppliers everyday,
ordering only one unit. However we does not keep all past data for forecasting
since it requires huge of memory and does not necessarily give us better results.
We normally keep past twenty day’s data for predicting purpose. Unfortunately
this approach did not give us too much benefits during the competition since we
only order a very small portion of components in the later days. We believe that
component price prediction will play more important role once the problem of
component pricing is fixed.

4. CONCLUDING REMARKS

The previous TAC games have proved its efficiency in promoting high quality of
research on autonomous agent design and E-trading[Wellman and Wurman 1999]
[Wellman et al. 2001] [Greenwald and Stone 2001] [Wellman et al. 2002]. The
ACM SIGecom Exchange, Vol. 4, No. 3, 2004.



Strategic Trading Agents via Market Modelling · 55

game platform not only provides a competitive environment to evaluate different
trading strategies and different structure of agents but also a testbed for examin-
ing artificial market rules. An electronic market running with purely autonomous
agents without sufficient testing would be in great dangerous. Researches pushed
by the competition could be in two directions: efficient trading strategies which
are capable of coping with any market situations and evolvable market-building
mechanisms to avoid possible degeneration of market functions.

The authors would like to thank the anonymous referees for their valuable comments. We also
wish to thank Yan Zhang, Ian Walsh, Chris Sheerman, Luke-karol Petelczyc for their supports
during TAC-03 competition.
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