
From an ebXML BPSS choreography to a
BPEL-based implementation

Ja-Hee Kim and Christian Huemer

University of Vienna and Research Studios Austria

ebXML and Web Services are two well accepted technologies to implement business collaborations.
In this paper we concentrate on the choreography of business collaborations. The corresponding
standards of ebXML and Web Services are BPSS and BPEL, respectively. We present when and
why we need to transform between these two standards. For the transformation we examine the
difference between them. Furthermore, we suggest guidelines for a transformation from BPSS to
BPEL.

Categories and Subject Descriptors: H.5.3 [Group and Organization Interfaces]: Web-based
interaction

Additional Key Words and Phrases: ebXML, Web Services, business process, BPSS, BPEL

1. INTRODUCTION

In November 1999 the organizations UN/CEFACT and OASIS joined forces to de-
velop an XML-based solution for companies conducting business over the Internet.
This initiative became known as ebXML. It resulted in a set of modular specifi-
cations. These specifications define ways to (1) describe a business process, (2)
assemble business documents from a set of core components with well defined busi-
ness semantics, (3) describe a company’s profile and agreements between companies,
(4) register business processes and profiles, and (5) exchange business messages.

Shortly after the start of ebXML, the work on another set of standards, which
became later known as Web Services, was initiated by the software industry. The
core standards in the Web Services environment are WSDL, SOAP and UDDI.
Additionally, new Web Services standards popped up whenever new requirements
in the implementation of the Web Services stack were detected. Missing a central
control - although most Web Services standards are managed by W3C or OASIS -
there sometimes exist different Web Services standards for the same purpose.

It follows that both ebXML and Web Services are technologies for implement-
ing business partnerships. It is quite common to consider these two families of
standards as being competitors. However, this is not necessarily true. It seems
that Web Services technology has been rapidly adopted by the software industry.

This work was partially supported by the Post-doctoral Fellowship Program of Korea Science &
Engineering Foundation (KOSEF).
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2004 ACM 0000-0000/2004/0000-0001 $5.00

ACM SIGecom Exchange, Vol. 5, No. 2, November 2004, Pages 1–0??.

2 ·
ebXML gained a lot of acceptance in different B2B communities specifying stan-
dard scenarios of business collaborations. Therefore, we believe that it is best to
combine the strengths of both standard technologies.

In this paper we demonstrate that both standards can co-exist. We concentrate
on standards to describe the sequencing of activities in an inter-organizational busi-
ness process, which is further on called business collaboration. In the literature (c.f.
[Peltz 2003]) both terms orchestration and choreography are related to the defini-
tion of an execution sequence. Orchestration refers to a process that is executed
within the boundaries of an organisation and that interacts with internal and ex-
ternal services. The term choreography has a collaborative nature and tracks the
business document exchanges among multiple parties and sources. The ebXML
standard to describe the choreography of business collaborations is the Business
Process Specification Schema (BPSS). In the Web Services environment there had
been a lot activities related to business processes: WSFL, XLANG, WSCL, WSCI,
and BPML. However, the winner seems to be the Business Process Execution Lan-
guage for Web Services (BPEL). Although BPEL’s primary goal is to describe the
orchestration of an executable business process, abstract BPEL is also used to define
the choreography for business protocols.

In Section 2 we motivate the co-existence of BPSS and BPEL by describing
the life-cycle of a business process definition. In this scenario it becomes evident
that a transformation from BPSS to BPEL is needed. In Section 3 we describe
our approach towards an automatic transformation. The summary in Section 4
concludes the paper.

2. LIFE-CYCLE OF A BUSINESS COLLABORATION

In order to define a typical life-cycle of a business process we consider the scenario
defined in the ebXML architecture ([UN/CEFACT OASIS 2001], page 8). In this
scenario a small and medium enterprise Company B wants to collaborate with a
large enterprise Company A. Instead of repeating the steps identified, we put the
whole scenario in a business process-centric perspective (see figure 1). A business
process definition for a business collaboration is usually created by a standard orga-
nization or industry consortia representing users of the respective industry (step 1).
A methodology like UN/CEFACT’s Modeling Methodology (UMM) [UN/CEFACT
TMG 2003] might support the definition. In order to make this definition avail-
able to the public, it is uploaded to a business registry (step 2). This requires
that the business process definition is described in a machine-processable format.
Such a format that describes the business collaboration from a global and neutral
perspective is BPSS.

A large company - in our example the seller - downloads the BPSS definition of
a business collaboration and reviews it to check whether it is appropriate or not
(step 3). If so, the seller implements the local process of the supported role, i.e. the
seller role (step 4). A candidate technology for the implementation is Web Services.
The workflow on the sellers side might be implemented by an engine that is based
on BPEL. Hence, it is important to automatically derive a BPEL process from a
BPSS process definition. Once the seller finishes the implementation, it registers
its profile stating that it supports the seller role of the business collaboration in
ACM SIGecom Exchange, Vol. 5, No. 2, November 2004.

· 3

standard

organization

seller

(Large)

customer

(SME)

collaboration

SW industry

1. creation

3. review2. registration

5. profile registration

7. agreement

4. implementation

8. execution 8. execution

3. review

4. implementation

5. installation

6. partner search

7. agreement

Fig. 1. Life-cycle of a business process.

question (step 5). A candidate technology is ebXMLs collaboration protocol profile
(CPP) referencing the respective role in the BPSS business process definition. In
our example the customer is a small and medium enterprise that cannot afford
to implement the collaboration by itself. It relies on the software industry. The
implementers of commercial off-the-shelf software (COTS) are expected to integrate
well-accepted business collaborations into their products. Therefore step 3 and 4
are not performed by the customer, but by his software provider. The customer
buys the software package that supports its role in the business collaboration. By
installing the software the customers profile is registered as well (step 5).

If the customer wants to perform the business collaboration, it searches for pos-
sible partners in the registry. This means it looks for CPPs that refer to the same
BPSS business process definition, but to the complimentary role (step 6). Next
an appropriate seller will be contacted to reach an agreement towards executing
the business collaboration in question (step 7). The ebXML collaboration protocol
agreement (CPA) supports this task. Finally, the customer and the seller are able
to execute the business collaboration (step 8). According to the implementation
in step 4 the run-time environment is based on Web Services and BPEL workflow
engines.

Since BPEL always describes a scenario from the view of a specific business
partner type, it is not suited to support the whole scenario. BPSS is able to
describe the overall process from a neutral perspective. However, BPSS has not so
much support by software providers. This requires a transformation from BPSS to
BPEL in the transition from step 3 to step 4.

3. TRANSFORMATION

In this section we concentrate on the transformation from BPSS to BPEL. BPSS
describes a business collaboration from a global and neutral view. A BPSS in-
stance includes all the choreography information for the involved business service
interfaces. BPSS does not care about the implementation of these business service
interfaces. In our paper we assume that these business service interfaces are imple-

ACM SIGecom Exchange, Vol. 5, No. 2, November 2004.

4 ·

<<BusinessTransactionActivity>>

Request Quote

<<BusinessTransactionActivity>>

Order Product

timeToPerform:1day

isConcurrent:true

(a) binary collaboration.

:Seller:Customer

<<QueryResponse>>

Obtain Quote

<<ResponseBusinessActivity>>

Calculate Quote

RequestForQuote

Envelope

Quote Envelope

timeToAcknowledgeReceipt:4hr

isAuthorizationRequired:true

retryCount:1

business transaction request quote

(b) business transaction.

Fig. 2. An example of UMM.

mented by Web Services. Each information exchange in the business collaboration
is realized by a basic Web Services. In the Web Services technology, BPEL is the
language of choice to build a complex choreography - like that of a business col-
laboration - from basic Web Services. Thus, the business collaboration originally
defined in a BPSS instance must be transformed to BPEL.

In the first subsection we show how the BPSS hierarchy of business collaboration -
business transaction - business action is mapped to BPEL. This is demonstrated by
a very simple choreography. Real-world business collaborations involve a much more
complex choreography. Thus, the second subsection suggests that a transformation
of such a complex choreography should be based on well-known workflow patterns.
Finally, the third subsection deals with the transformation of additional information
assigned to BPSS activities.

3.1 Business Collaborations Refined

BPSS version 1.1 is limited to binary collaborations. This means that no more than
two business partners collaborate. The activities within a binary collaboration are
business collaboration activities and/or business transaction activities. Business
collaboration activities are refined by a nested binary collaboration. A business
transaction activity is refined by a business transaction.

In figure 2 we show a very simple example of a binary collaboration between
a customer and a seller. This example uses the UMM notation [UN/CEFACT
TMG 2003]. The equivalent BPSS code is given in code 1. This simple order
management collaboration includes two business transaction activities request quote
(line 104-106) and order product (line 107-108). The first activity is the request
quote activity, since it is referenced by name in the toBusinessState attribute of the
start element (line 103). The order product activity follows in sequence, which is
indicated by the references in the attributes of the transition element in line 111.
The elements success (line 109) and failure (line 110) lead to the end states of the
business collaboration. Since both elements reference the order product activity,
the collaboration ends after this activity. The collaboration ends successfully if the
condition guard ProtocolSuccess is met. This is the case if the business transaction
OrderProductBT refining the last business transaction activity does not lead to a
protocol failure. Otherwise the condition guard for the failure element is met and
the binary collaboration fails.

ACM SIGecom Exchange, Vol. 5, No. 2, November 2004.

· 5

Code 1. BPSS code for the binary collaboration
(101) <BinaryCollaboration name="OrderManagement">

(102) <!- definition of Roles-->

(103) <Start toBusinessState="RequestQuote"/>

(104) <BusinessTransactionActivity name="RequestQuote"

(105) businessTransaction="RequestQuoteBT"

(106) timeToPerform="BT24H" isConcurrent="true"/>

(107) <BusinessTransactionActivity name="OrderProduct"

(108) businessTransaction="OrderProductBT"/>

(109) <Success fromBusinessState="OrderProduct" conditionGuard="ProtocolSuccess"/>

(110) <Failure fromBusinessState="OrderProduct" conditionGuard="AnyProtocolFailure"/>

(111) <Transition fromBusinessState="RequestQuote" toBusinessState="OrderProduct"/>

(112) </BinaryCollaboration>

Our goal is to generate a semantically equivalent business collaboration in BPEL.
The root element of BPEL is always a process. Therefore, the binary collaboration
becomes a process. The first option is the following: Whatever is nested within the
binary collaboration does not become a process of its own, but is specified within
the flow of the binary collaboration. As a consequence the flow of the binary
collaboration includes all activities performed by one partner type. Of course the
resulting flow requires communication with services provided by the other partner
type. This first approach depicted in 3a is suggested by [Hofreiter and Huemer
2004]. In our paper we suggest to solve out the business transactions. This means
each business transaction becomes a BPEL process as well. This approach is shown
in 3b. It results in a better modular architecture that enables the re-use of business
transactions. Furthermore, the transformation process is clearer and the resulting
BPEL code is easier to understand.

Code 2 defines the process for the binary collaboration order management service.
The resulting process definition consists of a sequence of four activities. The first
activity is by default the activation of the binary collaboration. The last activity
returns by default the result of the binary collaboration. In between go the invo-
cation of obtain quote (line 204), which starts the request quote process, and the
invocation of place order (line 205), which starts the order product process.

Code 2. XLANG-style BPEL code for the binary collaboration
(201) <process name="orderManagementService">

(202) <sequence>

(203) <receive operation="orderManagement"/>

(204) <invoke operation="obtainQuote"/>

(205) <invoke operation="placeOrder"/>

(206) <reply operation="orderManagement"/>

(207) </sequence>

(208) </process>

BPSS defines a business transaction as a special type of a binary collaboration.
It is an atomic unit that leads to a synchronized state in both information systems.
It is always composed of two activities, each of them performed by one business
partner. For example the request quote business transaction in figure 2b includes
two activities, obtain quote and calculate quote. The customer starts by performing

ACM SIGecom Exchange, Vol. 5, No. 2, November 2004.

6 ·

Scope

ScopeW
S
D
L

W
S
D
L

W
S
D
L

W
S
D
L

order

calculate quote

o
th
er
 a
p
p
li
ca
ti
o
n

order management service, obtain quote, and place order process order

calculate quote process

place order

request quote

order product

obtain quote

(a) BT nested in a scope.

request

quote

order

product

W
S
D
L

W
S
D
L

W
S
D
L

W
S
D
L

W
S
D
L

W
S
D
L

W
S
D
L

W
S
D
L

place order

obtain quote

order

calculate quote

O
th
er
 A
p
p
li
ca
ti
o
n

order management service order product process process order

request quote process calculate quote process

(b) BT as a another process.

Fig. 3. Two implementations of BPEL

the obtain quote activity, which creates a request for quote envelope and sends it to
the seller. The receipt of this envelope initiates the seller’s calculate quote activity.
After calculating, the seller returns the quote envelope to the customer’s obtain
quote activity.

A business transaction always follows this simple pattern. Only the informa-
tion flow for the response is optional. Thus, BPSS defines the following element
structure. A business transaction element contains a requesting business activity
element and a responding business activity. A document envelope created by one of
the two activities is specified as child element of the corresponding activity. Code
3 represents the business transaction request quote depicted in figure 2b.

Code 3. BPSS code for the business transaction
(301) <BusinessTransaction nameID="RequestQuoteBT">

(302) <RequestingBusinessActivity nameID="ObtainQuote" isAuthorizationRequired="true"

(303) retryCount="1" timeToAcknowledgeReceipt="BT4H">

(304) <DocumentEnvelope nameID="RequestForQuote" businessDocument="RequestForQuote"/>

(305) </RequestingBusinessActivity>

(306) <RespondingBusinessActivity nameID="CalculateQuote">

(307) <DocumentEnvelope nameID="QuoteEnvelope" businessDocument="QuoteEnvelope"/>

(308) </RespondingBusinessActivity>

(309) </BusinessTransaction>

BPEL splits a business transaction into two processes - one for each participating
partner. In our example, the business transaction is divided into the customer’s
process and the seller’s process. Code 4 is the BPEL code for the customer.

This process is started by receiving a call of the obtain quote operation (line
413). This operation is called by the order management service (c.f. line 204) Since
ACM SIGecom Exchange, Vol. 5, No. 2, November 2004.

· 7

request quote is an atomic process, it requires a failure handling mechanism in order
to recover to the initial state if needed (line 402–406). This process sends a message
request for quote envelope to the seller and waits for the response message quote
envelope (line 420-421).

Code 4. BPEL code for the business transaction
(401) <process name="requestQuoteProcess">

(402) <faultHandlers>

(403) <catch>

(404) <!- operation for recover-->

(405) </catch>

(406) </faultHandlers>

(407) <eventHandlers>

(408) <onAlarm for="PT48H">

(409) <!- conflict to time to perform -->

(410) </onAlarm>

(411) </eventHandlers>

(412) <sequence>

(413) <receive operation="obtainQuote" createInstance="yes"/>

(414) <scope>

(415) <eventHandlers>

(416) <onAlarm for="PT4H">

(417) <!- repeat from 420 to 421 -->

(418) </onAlarm>

(419) </eventHandlers>

(420) <invoke operation="calculateQuote" inputVariable="requestForQuoteEnvelope"

(421) outputVariable="quoteEnvelope"/>

(422) </scope>

(423) <reply operation="quoteRequest"/>

(424) </sequence>

(425) </process>

The BPEL code for the collaborating partner - the seller - is a little bit simpler
(See code 5). This process consists of recovery operations, an alarm handling,
receive, reply activities. The receive and reply activities are complementary to the
invoke activity of the customer process (line 420-421). In general, if the business
transaction does not have any response message, the reply activity is removed.

Code 5. BPEL code for the responding part
(501) <process name="calculateQuoteProcess">

(502) <faultHandlers>

(503) <catch>

(504) <!- operation for recover-->

(505) </catch>

(506) </faultHandlers>

(507) <sequence>

(508) <receive operation="calculateQuote"

(509) variable="requestForQuoteEnvelope" createInstance="yes"/>

(510) <reply operation="calculateQuote" variable="quoteEnvelope"/>

(511) </sequence>

(512) </process>

ACM SIGecom Exchange, Vol. 5, No. 2, November 2004.

8 ·
3.2 Complex Collaborations

The business transaction of our example in the previous subsection might be real-
istic. However, the binary collaboration - consisting of a sequence of two business
transactions - is over-simplified. Real-world collaborations are built by much more
complex workflow patterns than a sequence. It would go beyond the scope and
page limit of this paper to elaborate all the possible workflow patterns in detail. In
general, we suggest to base the transformation on the workflow patterns proposed
by Aalst et al [Van der Aalst et al. 2003]. These patterns were originally developed
to examine the expressive power of a workflow server. However, they have been
used as well to evaluate languages/standards describing workflows. Amongst oth-
ers, there exist evaluations of UML [Dumas and ter Hofstede 2001], BPEL [Wohed
et al. 2003], and UMM/BPSS [Kim and Huemer 2004]. We summarize their results
in table I, which shows the workflow patterns supported by each business process
language. A ‘+’ and a ‘-’ in the cell mean direct support and no support, respec-
tively. If the business process language partially supports the pattern, it is rated
as ‘+/-’.

The basic idea of our approach is the following: If the flow of business transaction
activities in the BPSS binary collaboration follows a certain pattern, the equivalent
BPEL pattern is created. This task becomes easier, if not only the BPSS collabo-
ration - there is no other choice - but also the BPEL collaboration follows a graph
structure. In accordance to its predecessors, a BPEL process might be based on
the pi-calculus (XLANG) or petri nets (WSFL). Code 2 is an example of XLANG
style BPEL. It looks similar to structured program languages such as Pascal and C.
The advantages of XLANG style are simple and easy to program structures. Since
we prefer a graph-like notation, the WSFL-style is our choice. Consequently, we
prefer the WSFL-style as given in code 6, which is equivalent to code 2.

UMM BPSS BPEL

Sequence + + +
Parallel Split + + +
Synchronization + + +
Exclusive Choice + + +
Simple Merge + + +
Multi Choice + + +
Synchronizing Merge + - +
Multi Merge - - -
Discriminator - + -
Arbitrary Cycles +/- + -
Implicit Termination +/- +/- +
MI without Synchronization + + +
MI with a Priori Design Time Knowledge - - +
MI with a Priori Runtime Knowledge - - -
MI without a Priori Runtime Knowledge - - -
Deferred Choice + + +
Interleaved Parallel Routing - - +/-
Milestone + + -
Cancel Activity - - +
Cancel Case + + +

Table I. Workflow patterns of UMM, BPSS, and BPEL.

ACM SIGecom Exchange, Vol. 5, No. 2, November 2004.

· 9

Code 6. WSFL style BPEL code for the binary collaboration

(601) <flow>

(602) <links>

(603) <link name="Start"/> <link name="RQ2OP"/> <link name="Final"/>

(604) </links>

(605) <receive operation="orderManagement">

(606) <source linkName="Start"/>

(607) </receive>

(608) <invoke operation="quoteRequest" outputVariable="PO">

(609) <target linkName="Start"/> <source linkName="RQ2OP"/>

(610) </invoke>

(611) <invoke operation="orderProduct" inputVariable="PO" outputVariable="">

(612) <target linkName="RQ2OP"/> <source linkName="Final"/>

(613) </invoke>

(614) <reply operation="orderManagement">

(615) <target linkName="Final"/>

(616) </reply>

(617) </flow>

Each element of BPSS can be mapped to WSFL style BPEL nearly one by one.
Start (line 103) and business transaction activity (line 104-106 and line 107-108)
elements in code 1 can be mapped to receive (line 605-607) and invoke (line 608-
610 and line 611-613) elements in code 6, respectively. BPSS has at least two final
state, success (line 109) and failure (line 110). In contrary BPEL uses exactly
one reply element (line 614-616) which must signal the state in the message of the
corresponding Web Services. A pair of elements is connected by a transition in
BPSS and a link in BPEL. A BPSS transition elements specifies the source and the
target activity. In contrary, a BPEL activity includes the information for which
links it is the source and/or target. The number of BPEL links corresponds to the
number of BPSS transitions plus two, a link from the start activity and a link to
the reply element.

A transformation from BPSS to BPEL should include all the patterns that are
supported by BPSS. In other words we have to consider all the patterns marked
‘+’ in the BPSS column of table I. Among these patterns a sequence, a parallel
split, a synchronization, an exclusive choice, and a simple merge pattern are most
elementary [Van der Aalst et al. 2003; WFMC 1999]. Both BPSS and BPEL support
these elementary workflow patterns. Moreover, these languages also support a multi
choice, a deferred choice, and a cancel case pattern.

Some workflow patterns such as a discriminator, an arbitrary cycle, and a mile-
stone pattern are supported by BPSS but not by BPEL. However, we can transform
them using work-around solution suggested by Aalst et al. [Van der Aalst et al.
2003]. For example, an arbitrary cycle implemented in BPSS can be transformed
to a structured cycle, which can be modeled in BPEL. Therefore, BPEL can model
the same choreography to the arbitrary cycle pattern after the transformation to
the structured cycle.

ACM SIGecom Exchange, Vol. 5, No. 2, November 2004.

10 ·
3.3 Properties of Activities

UMM defines tagged values for activities that are specific for the purpose of model-
ing B2B business collaborations. Since BPSS is derived from the UMM meta-model,
some of these tagged values are reflected as attributes to BPSS elements. A BPSS
business transaction activity includes information about the maximum time to per-
form and a flag to signify whether the activity might be concurrent or not. The
business transaction activity request quote in figure 2a shows two tagged values,
time to perform: 1 day and is concurrent: true. This is equivalent to the attributes
in line 106.

BPEL does not include this kind of attributes for activities. However, we are able
to map the semantics of both attributes. If a business transaction is concurrent,
this means that a new instance of an activity must be created for each concurrent
execution. Hence, the createInstance attribute of the BPEL activity is set to yes
(line 413). It is important to distinguish different instantiations of the same activ-
ity. Usually, messages carry business tokens as unique identifiers in the header or
in the business documents. The values for the same token must differ for different
instances. If ebXML messaging is used, header elements for such tokens are pro-
vided. BPEL uses so-called correlation sets to declaratively express such tokens in
the process description. In this case the XPath value of a BPEL correlation set
should reference the corresponding ebXML messaging header elements.

The implementation of time to perform attribute in BPEL is more complex. The
tagged value time to perform: 1 day of business transaction activity quote request
means that the corresponding business transaction should raise an alarm if the
activity takes more than one day. Therefore, we attach the alarm event handler to
quote request process (line 407-411).

The requesting and responding activities in a business transaction also carry
tagged values. In figure 2b, the action obtain quote has three tagged values: time
to acknowledge receipt:4hr, is authorization required: true, retry count: 1. These
tagged values are implemented in lines 302-303. In order to transform these tagged
values, we should understand their semantics. Tagged value time to acknowledge
receipt means that the seller signals within 4 hours that the received document
passed a syntax and a sequence check . Therefore, it is also implemented as an
alarm event (line 415-418). This alarm relates only to the invoke activity calculate
quote(line 420-421). The tagged value retry count is closely related. It defines
the number of retrials in case of an alarm. Hence, the number of alarms must
correspond to the number of retrials.

BPSS includes some features that do not directly match to any BPEL con-
cept. For example, the activities in a business transaction have special security
requirements. These security requirements are assigned as attributes to the re-
questing/responding business activity elements. Consider the is authorization re-
quired attribute of obtain quote in figure 2. This means that the output of this
activity, which is the request for quote envelope must be signed. Since BPEL deals
only with choreography/orchestration of Web Services, this security feature is not
supported. Thus, this concept must be handled by other standards of the Web
Services stack. The appropriate standard in this case is WS-Security [OASIS 2004].
WS-Security extends SOAP by specific header elements ensuring secure SOAP mes-
ACM SIGecom Exchange, Vol. 5, No. 2, November 2004.

· 11

sage exchanges. These header elements are used to sign a document. Alternatively,
the ebXML messaging extending the SOAP header in a similar way might be used.

Accordingly, there are three ways to transform the attributes of a business trans-
action activity and actions in business transaction. They depend on the nature of
the attribute. The first group uses a mapping to a corresponding BPEL attribute.
The second group is reflected in the process structure. Finally, the third group
does not have a corresponding BPEL concept. They must be handled by other
standards of the Web Services stack.

4. CONCLUSION

Recently, ebXML and Web Services became popular technologies to implement
business collaborations. The standards used to describe the choreography of busi-
ness collaborations are BPSS for ebXML and BPEL for Web Services, respectively.
In this paper, we demonstrate that these two standards do not exclude each other
in a business environment. We show a scenario that requires both BPSS and BPEL
to co-exist. BPSS is used to describe a global choreography. The implementa-
tion of a workflow in the participants’ systems is based on BPEL. As a result, a
transformation from BPSS to BPEL is required. In this paper we suggest guide-
lines for this transformation. We propose a general guideline in order to reflect the
hierarchical structure of BPSS business collaborations in BPEL. Furthermore, we
suggest to base the transformation of complex workflows on well-accepted workflow
patterns. In our future work we will develop formal rules for the transformation of
each pattern.

REFERENCES

Dumas, M. and ter Hofstede, A. H. 2001. UML activity diagrams as a workflow specification
language. Lecture notes in computer science 2185, 76 – 90.

Hofreiter, B. and Huemer, C. 2004. Transforming UMM business collaboration models to
BPEL. In Workshop on Modeling Inter-Organizational Systems (MIOS 04). Springer LNCS
3292, Cyprus, 507 – 519.

Kim, J.-H. and Huemer, C. 2004. Analysis, transformation and improvements of ebXML chore-
ographies based on workflow patterns. In International Conference on Cooperative Information
Systems (CoopIS 04). Springer LNCS 3290, Cyprus, 66 – 84.

Peltz, C. 2003. Web services orchestration and choreography. IEEE Computer 36, 10 (October),
46 – 52.

OASIS. 2004. Web services security: SOAP message security 1.0. Tech. Rep. OASIS Stan-
dard 200401, OASIS, http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0. March.

UN/CEFACT OASIS. 2001. ebXML techinical architecture specification, version 1.0.4.
http://www.ebxml.org/specs/ebTA.pdf.

UN/CEFACT TMG. 2003. UN/CEFACT modeling methodology, revision 12.
http://www.untmg.org.

WFMC. 1999. Workflow management coalition terminology & glossary. Tech. Rep. WFMC-TC-
1011, WfMC. February.

Van der Aalst, A., Hofsteded, A. T., Kiepuszewski, B., and Barros, A. 2003. Workflow
patterns. Distributed and Parallel Databases 14, 5 – 51.

Wohed, P., van der Aalst, W. M., Dumas, M., and ter Hofstede, A. H. 2003. Analysis of
web services composition languages: The case of BPEL4WS. In International Conference on
Conceptual Modeling (ER 2003). Springer LNCS 2813, Berlin, 200–215.

ACM SIGecom Exchange, Vol. 5, No. 2, November 2004.

