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Providing efficient mechanism for allocation and management of resources is essential for realizing a 
computational grid. Since resource providers and consumers may be independent bodies in a computing grid 
platform, negotiation among these participants is necessary. This position paper discusses (i) the design 
considerations of e-negotiation agents for grid commerce, and (ii) the possible application of Market-driven 
agents (MDAs) as negotiation mechanisms for managing resources in a computational grid. MDAs are 
negotiation agents designed with the flexibility of (i) making adjustable amounts of concession taking into 
account factors such as market rivalry, time preferences, and outside options, and (ii) relaxing trade expectation 
in the face of intense pressure.   In addition to having stable strategies, making prudent compromises and 
optimizing utility, additional desirable properties of MDAs that are suitable for a computational grid include: 
adaptivity to changes in market conditions, and flexibility of reaching faster consensus. 
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1. INTRODUCTION  

The rapid development of grid and peer-to-peer computing provides enabling 
technologies for bolstering virtual enterprises in sharing geographically distributed 
resources. In a computational grid [1], one envisions ‘software applications “plugging” 
into a “power grid” of computational resources drawing upon the necessary computing 
resources from the global supply for their executions’ [2]. While there are much attention 
focusing on the software mechanism and software infrastructure for engineering the grid 
vision, to date, there is little work that addresses the resource control policies of a 
computational grid. It was noted in [3] that allocation and management of resources is 
essential for realizing a computational grid, and providing efficient resource allocation 
mechanism is a complex undertaking [4]. Software agents, in particular e-negotiation 
agents can play an essential role in realizing the Grid vision [5]. To the best of the 
author’s knowledge, at present, there are only a few (preliminary) efforts on applying e-
negotiation agents for resource management in grid computing, (e.g., [4-9]).  
Additionally, the strategies adopted by these agents do not take the dynamics of the 
market into consideration. This position paper discusses the motivation for considering 
market factor as a design consideration of negotiation mechanisms for grid resource 
allocation (section 2.1). Although still in its infancy, this work rests on the author’s 
previous work on market-driven agents (MDAs) [10-15] (section 3).  Section 2 discusses 
the possible transformation of e-negotiation technology for e-commerce into grid-
commerce (G-commerce) applications.  Sections 4 and 5 discuss the desirable properties 
of MDAs and its suitability in resource negotiations in a computational grid. 
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2. FROM E-COMMERCE TO G-COMMERCE 
 
As pointed out in [8], both e-commerce systems and market-oriented grids share a 
common objective because in both systems, business transactions are carried out via a 
network such as the Internet. While one envisions more specific types of products such as 
computational power, storage, and associated services to be traded in market-oriented 
grids, e-commerce systems generally and potentially deal with a wide range of products. 
In some cases, adapting an e-commerce system for one kind of product to be used in 
trading another product involves minor or perhaps minimal modifications. Hence, it 
seems plausible to think that (some) agents developed for e-commerce generally share 
some (or many) of the design principles for agents in market-oriented grids. For instance, 
an e-Negotiation agent shares the same objective as a negotiation agent in market-
oriented grids because they are both expected to be designed to optimize utilities of 
buyers (resource consumers) or sellers (resource providers) through some forms of 
bargaining strategies. While the determination of their utility functions may not 
necessarily be similar, previously proven and useful negotiation strategies adopted by e-
Negotiation agents can also be (potentially) adopted by negotiation agents in market-
oriented grids. However, as discussed in section 2.1, there are additional design issues 
that may need to be addressed.  
 
2.1. Resource Negotiation in a Computational Grid 
 
Negotiation activities in a grid-computing platform are required because participating 
parties are independent bodies [8] with different policies, objectives and requirements. 
Through negotiation, players in a grid marketplace, i.e., resource owners (or service 
providers) and consumers [4], are given the opportunity to maximize their return-on-
investment and minimize their cost (the price they pay) respectively. In addition, it is 
envisioned that negotiation in a market-oriented grid must take into consideration the 
following: 

(i) the dynamics of the computing environment  
(ii) the speed at which resources are allocated or de-allocated. 

 
While factor (i) is an essential consideration because resources and services are 
constantly being added or removed from the grid [8, 16], factor (ii) is important because 
any delay incurred on waiting for a resource assignment is perceived as an overhead [3]. 
Both factors (i) and (ii) collectively help to define some of the design considerations of 
G-commerce negotiation agents listed as follows:  
(i) market factors: To optimize their returns, G-commerce negotiation agents 
should consider factors such as opportunity and competitions  
(ii) time constraint: G-commerce negotiation agents should be sensitive to deadlines  
(iii) tradeoff:  To consider the tradeoff between the benefit of using a suboptimal (or 
slightly more expensive) resource that can be located and allocated more quickly and the 
benefit of using the best (or least expensive) resource which may be more difficult to 
acquire. Like time constraint, this consideration relates to the issue of overhead [3]. 
 
   Although there are many existing e-Negotiation agents (eg, just to name a few: Kasbah 
[17], Faratin et al. negotiation decision functions [18], Fuzzy e-Negotiation Agent (FeNA) 
[19]), none of these agents was designed to take into consideration all the three design 
issues mentioned above.  In Kasbah [17], relaxation of bids/offers  is  largely  determined  
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by trading conventions, or strategies encoded by users. Although Kasbah considered 
deadline as a factor when selecting the strategy for making concession before trading 
commences, such selection cannot take into account the ever-changing external 
influences such as increasing/decreasing number of producers and consumers. Using 
negotiation decision functions (NDFs) based on time, resource, and the behavior (attitude) 
of its opponents, Faratin et al. [18] defined a range of tactics for generating (counter-
)proposals. While time-NDFs consider deadlines, resource-NDFs take into consideration 
diminishing level of resources when determining the amount of concession. Behavior-
NDFs allow agents in [18] to replicate the attitude of their trading partners. Like Kasbah,  
Faratin et al.’s NDFs do not address design issues (i) and (iii) mentioned above.   
FeNAs[19] adopts fuzzy constraint-based reasoning for bolstering multi-issue 
negotiations. One of the distinguishing features of FeNAs is that preferences, priorities 
and constraints are defined as fuzzy constraints (e.g. low price, high quality, short 
delivery time and budget at about $90). FeNAs’s objectives may also be defined as soft 
objectives (e.g. an agent prefers to pay $200 but is still happy with paying a little bit 
more).  Although this feature may provide FeNA with the flexibility of acquiring 
available suboptimal resources more quickly, it does not take into account market factors 
as well as time constraints. In a highly dynamic grid environment, it is essential to take 
market dynamics into consideration because (i) providers can make resources/services 
available to and disconnect from a market-oriented grid, and (ii) consumers can enter and 
withdraw requests, perhaps at machine speed in both cases. On this account, it seems 
prudent to design negotiation agents in a market-oriented grid by considering market 
factors (such as opportunity and competition) that can significantly enhance or diminish 
the successful acquisitions (or provisions) of resources/services with optimum returns.  
 
3. MARKET-DRIVEN AGENT  
 
Sim et al. [10-15] proposed several variants of market-driven strategies for negotiation 
agents that make concessions taking into account factors such as outside options, market 
rivalry, and time pressure. A market-driven agent (MDA) is a negotiation agent that 
makes adjustable amounts of concession by considering deadline, competition, and 
opportunity. Due to space limitation, this section only presents a very brief summary of 
the features of MDAs, and detailed designs and previous empirical results evaluating 
MDAs can be found in [10-15]. An MDA makes concession by narrowing the difference 
kt between its proposal and the counter-proposal of its opponent in a negotiation round t. 
In determining the appropriate amount of concession, an MDA adopts the following three 
decision functions to determine the difference kt+1 in proposal and counter-proposal in the 
next round t+1: 
 

kt+1= f[O(nB
t, vB→Sj

t, <wSj→B
t>),C(mB

t,nB
t),T(t,τ,λ)]kt  

 
The above formulation models the decision functions from a buyer agent’s perspective 
(the formulation for a seller agent is similar). Let B be a buyer agent. The opportunity 
function O(nB

t, vB→Sj
t, <wSj→B

t>) of B determines the amount of concession based on (i) 
nB

t –which is the number of trading alternatives of B (i.e., the number of sellers) and (ii) 
differences in utilities (vB→Sj

t) generated by the proposal of B and the counter-proposal of 
its trading partner(s) (<wSj→B

t>) [11,12]. vB→Sj
t is the utility that B will receive if seller Sj 

accepts B’s proposal. <wSj→B
t> is a set of utilities such that each wSj→B

t is the utility that B 
will receive if B accepts seller Sj’s proposal.  When determining opportunity, it was 
shown in [11] that if there is a large number of trading alternatives, the likelihood that 



MDAs to Market-Oriented Grids     ．   

ACM SIGecom Exchanges, Vol. 5, No. 2, November 2004, Pages 45–53. 

48
some agent proposes a bid/offer that is potentially close to an MDA’s offer/bid may be 
high. However, it would be difficult for the MDA to reach a consensus if none of the so 
many options are viable (i.e., there are large differences between the proposal of the 
MDA and the counter-proposals of all its trading partners). On this account, O(nB

t, vB→Sj
t, 

<wSj→B
t>) determines the probability of obtaining a utility vB→Sj

t with at least one of its nB
t 

trading partners by considering the notion of conflict probability [20,21]. Due to space 
limitation the derivation of O(nB

t, vB→Sj
t, <wSj→B

t>) is omitted here but details can be 
found in [11,12]. 
 

In designing MDAs, competition is modeled as a decision function C(mB
t, nB

t). While 
nB

t is the number of sellers, mB
t is the number of competitors (i.e., the number of 

sellers). C(mB
t, nB

t) determines the probability that an agent B is ranked as the most 
preferred trading partner by at least one other agent at round t. Suppose B has mB

t-1 
competitors, and one trading partner, the probability that B is not the most preferred 
trading partner of other agents is (mB

t -1)/ mB
t. If B has mB

t-1 competitors, and nB
t trading 

partners, the probability that B is not the most preferred partner of all its trading partners 

is ( 1) /
B

tnB B
t tm m⎡ −⎣ ⎤⎦

. Details of deriving C(mB
t, nB

t) are given in [11, p. 622, 12, p. 192]. 

Hence, at round i, the probability that B is considered the most preferred trading partner 
by at least one agent is: 

( , ) 1 ( 1) /
B

tnB B B B
t t t tC m n m m⎡ ⎤= − −⎣ ⎦

 

The probability of being considered the most preferred trading partner by some parties 
increases with the number of trading partners nB

t. However, with a larger number of 
competitors mB

t, the likelihood of being considered the most preferred trading partner 
decreases. 
 
The time-dependent function T (t, τ, ε), models the intuition that as time passes, an MDA 
relaxes its proposal by making attempt(s) to narrow its difference(s) with other parties 
given as follows:  

( ) ετετ /1/1),,( ttT −=          
where t is the current trading time, τ is the deadline, and ε is an agent’s eagerness that 
represents the user’s desire to complete the deal. While ε∈[0,1], both t and τ are 
measured in terms of the number of trading rounds.  T (t, τ, ε) enables an MDA to adopt 
various patterns to determine the discount factors when narrowing the differences among 
proposals with the passage of time. In [14], MDAs with different values of eagerness 
(0<ε≤1) adopt different strategies in making concession with respect to remaining trading 
time and are classified as follows: 

1) Linear:  ε=1 and T (t, τ, ε)=1-(t/τ). An agent makes a constant rate of concession. 
2) Conservative: When 0<ε<1, an agent makes smaller concessions in early rounds and 

larger concessions in later rounds. 
3) Arrogant: ε=0 and T (t, τ, ε)=1-(t/τ)∝. This special case is not considered, because it 

represents the situation where an agent is totally not interested to negotiate.   
4) Conciliatory: In addition, there is also another class of strategies – conciliatory 

strategies, which were adopted by MDAs in [11,12]. MDAs adopting conciliatory 
strategies make larger concessions in the early trading rounds and smaller concessions at 
the later stage. However, in [14], MDAs (with 0<ε<1) are not designed with conciliatory 
strategies. Analyses by Sim [12] showed that conciliatory strategies MDAs are more 
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likely to achieve lower utilities even though they face lower risk of losing deals to other 
competitors. Since MDAs in [14] are designed with fuzzy rules to lower their expectation  
in the face of intense negotiation pressure such as short deadlines, conciliatory strategies 
were not adopted.   
 
Relaxing Expectation: Sim and Wang [14] have developed enhanced MDAs (EMDAs) 
that are programmed to relax their expectation in the face of intense pressure (e.g., when 
an EMDA has urgent need to acquire a resource, or is facing strong competition or fast 
approaching deadlines). Since notions such as “very slight” difference in their proposals, 
“strong” competition, “fast” approaching deadline, and “very urgent” are vague, a fuzzy 
decision controller (FDC) was designed in [14] to guide EMDAs in making decision 
when relaxing their aspirations. In designing the FDC, EMDAs considered  factors such 
as competition and eagerness.  These factors put a negotiator under pressure. Since the 
fuzzy rules are designed to relax a negotiator’s trading conditions (e.g., its aspiration 
value/level), they are only applied when a negotiation agent is under negotiation pressure. 
For instance, some of the rules are applied when an agent risks losing the deal in the face 
of competition or when an agent is very eager to complete a deal. Details are given in 
[14].  
 
Negotiation Process: Negotiation proceeds in a series of rounds as follows.  At any 
round, at most one agent enters the market randomly. Trading begins when there are at 
least two agents of the opposite type (one buyer and one seller). When trading starts, an 
agent proposes a deal from their space of possible deals (e.g., the most desirable price, 
the least desirable (reserved) price, and those prices in between), typically an agent 
proposes its most preferred deal initially. Adopting Rubinstein’s [22, p. 100] alternating 
offers protocol, a pair of buyer and seller agents negotiates by making proposals in 
alternate rounds. Multiple buyer-seller pairs can negotiate deals concurrently. If no 
agreement is reached, negotiation proceeds to another round. Negotiation between a pair 
of agents terminates (i) when an agreement is reached, or (ii) with a conflict when one of 
the agents’ deadline is reached. For an MDA, an agreement is reached when its trading 
partner’s offer matches or exceeds what it asked for. An EMDA uses the fuzzy rules in 
the FDC to determine if an offer is acceptable. 
 
4. DESIRABLE PROPERTIES 
 
This section discusses some of the desirable properties of MDAs and EMDAs with respect 
to their possible applications as negotiation tools in resource allocation of a 
computational grid. MDAs possess many of the desirable properties of negotiation 
mechanisms prescribed in [23], such as being stable and selecting best-response strategy 
to maximize utility. These properties were proven in [13] and are discussed below. 
 
Best-response strategy: In [13] it was shown that the conservative strategy is the best-
response (optimal) strategy regardless of the strategy adopted by its opponent.  
 
Sequential equilibrium: At every of its decision point, adopting the conservative strategy 
is the best response for an MDA. This satisfies the notion of sequential rationality [24]. 
Using this notion, it was shown in  [13] that the strategies of an MDA and its opponent 
forms a sequential equilibrium [24] and neither the MDA nor its opponent finds any 
incentive to deviate from the dominant strategy which is the conservative strategy. 
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(Detailed proofs can be found in [13]). Consequently, the strategies adopted by MDAs are 
stable. Stability is an essential property because a negotiation agent that is stable requires 
fewer computational resources to outguess its opponent [25, p. 21] or to speculate about 
strategies of others [26, p. 8].   
 
Making prudent compromises: An agent receives a utility of 0 if it never trades [27, p. 
152] or is unsuccessful in trading (because disagreement is the worst outcome [27, p.33]). 
Hence, both (1) the size of the possible payoffs and (2) the probability of achieving these 
are essential. Although conceding more increases the probability of reaching a deal, it is 
inefficient because an agent “wastes” some its utility. However, if an agent concedes too 
little, it runs the risk of losing a deal. In [13], it was shown that MDAs make minimally 
sufficient concessions. Hence, they avoid making excessive concessions in favorable 
markets and inadequate concessions in unfavorable markets. This distinguishing property 
of MDAs enables them to optimize their returns in different market situations. This 
satisfies design consideration (i) in section 2.1. 
 
Sensitive to deadlines: Like Kasbah and Agents in [18], the time decision function of 
MDAs is inherently designed to respond to deadlines. This satisfies design consideration 
(ii) in section 2.1.  
 
Making Trade off: By augmenting an MDA with an FDC, an EMDA is designed to relax 
trading expectation to increase its chance of completing a deal. Empirical results in [14] 
obtained from stochastic simulations in a wide variety of market conditions showed that 
by relaxing trade expectation, both the success rate and expected utility of MDAs are 
enhanced in many market situations, particularly when they are facing short deadlines. 
While details can be found in [14], selected empirical results are given in Figs. 1a-1d in 
the appendix to make this position paper more self-contained. Figs. 1a-1d showed that 
EMDAs achieved higher expected utility and success rate in relatively short deadlines 
(eg, between 15 to 40 rounds of negotiation), as well as under different constraints when 
the agents have different eagerness. This feature is desirable for addressing design 
consideration (iii) in section 2.1. 
 
5. DISCUSSION AND CONCLUSION 
     
This position paper attempts to answer the following questions: 
 

(i) What are the desirable properties of a negotiation agent in resource 
allocation in a computational Grid? 

(ii) Can some of the negotiation tools in e-Commerce be adapted for resource 
negotiation in a computational Grid? 

(iii) Explain how the theoretical results in [13] and empirical results in [14] 
show the suitability of MDAs and EMDAs for resource negotiation in a 
computational Grid? 

 
In addition to the desirable properties (such as stability, utility maximizing, best response 
strategy) in negotiation mechanism design (NMD) noted in [25, 28, 23], in section 2.1 
this position paper suggests that NMD for resource allocation in a computational grid 
should also consider the market factors as well as making tradeoff to increase the speed 
of allocation. 
While a testbed for simulating the application of MDAs and EMDAs in a grid computing 
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environment is still under construction, this position paper envisions that negotiation 
tools such as MDAs previously developed for e-commerce may be adapted for grid 
resource allocation if design considerations such as speed and market dynamics are taken 
into account. The testbed that is under development consists of (i) a set of grid resources 
represented by a set of provider agents, and (ii) a set of resource consumers represented 
by a set of consumer agents, (iii) a repository of resource information, (iv) a library of 
negotiation strategies, and (v) a heterogeneous market of negotiation agents (that 
includes MDAs, EMDAs and others). 
 
Theoretical results in [13] showed that the strategies of MDAs are stable and that MDAs 
are utility maximizing and respond to different market conditions by making minimally 
sufficient concession (based on the assumption that the current proposal of an MDA 
reflects its beliefs about the current market conditions, and any revision of the proposal 
depends on the random and unpredictable arrival of new information). Empirical results 
in [14] showed that EMDAs generally enhance the expected utility and success rate of 
MDAs. Furthermore, previous empirical results in [10] demonstrated that in general 
market-driven strategy outperformed fixed strategy. Some selected results as summarized 
in Fig 2 in the appendix show that MDAs (with different levels of eagerness) generally 
achieved higher utilities than fixed strategy agents. However, an MDA that is very 
anxious (eager) to trade in not so favorable market conditions (e.g. less trading partners), 
did not outperform agents adopting fixed strategy (see the circled region in Fig.2). This 
corresponds to the intuition in real-life trading. For instance, if one urgently needs to fly 
during a busy (high) season, one would be coerced to pay higher airfare.  
 
Building on previous theoretical and empirical results, a future agenda is to demonstrate 
the suitability of MDAs and EMDAs as economic models for resource management in a 
Grid computing platform. 
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Fig. 1a. EMDAs’ Success rate [14] 
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Fig. 1b. EMDAs’ Expected Utility [14] 
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Fig. 1c. EMDAs’ Success rate [14] 
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Fig. 1d. EMDAs’ Expected Utility [14] 
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Fig. 2. Market-driven and Fixed Strategies [10] 


