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Navigational patterns have applications in sevarahs including: web personalization, recommendatiser-
profiling and clusteringetc Most existing works on navigational pattern-disay give little consideration to
the effects of time (or temporal trends) on naviyet! patterns. Some recent works have proposedefrarks
for partial temporal representation of navigatiomaltterns. This paper proposes a framework thatefsod
navigational patterns as full temporal objects thety be represented as time series. Such a refatisen
allows a rich array of analysis techniques to belieg to the data. The proposed framework also rcésathe
understanding and interpretation of discoveredepadt and provides a rich environment for integoatihe
analysis of navigational patterns with data frora tinderlying organizational environments and othdernal
factors. Such integrated analysis is very helpfubinderstanding navigational patterns (e.g., E-ceroensites
may integrate the trend analysis of navigationdtepas with other market data and economic indisitor o
achieve full temporal representation, this pap@ppses a navigational pattern-discovery techniqae is not
based on pre-defined thresholds. This is a shdmfrexisting techniques that are driven by pre-éefin
thresholds that can only support partial tempa@ptesentation of navigational patterns.

Categories and Subject Descriptors: H.2I&fdrmation Systems]: Database Management Batabase
Applications K.4.4 [Computing Milieux]: Computers and SocietyElectronic Commerce

General Terms: Design, Algorithms, Human Factors
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1. INTRODUCTION

An interesting problem in Web usage mining [Srivastaval.e2000] that has attracted
the attention of several researchers is the disgowértraversal patterns (or link
navigation patterns) of Web users [Chen et al. 1998]. idimiavigational patterns
involves identifying how users access informatiomdéiest to them and travel from one
object (e.g., web page) to another using the navigatifemilities provided (e.g.,
hyperlinks). Tracking user-browsing habits provides useffbrination for service
providers and businesses, and ultimately should help to wmphe effectiveness of the
service provided. Navigational patterns have several@gtigns including the following:
web recommendation systems and adaptive web sites {diu2002], user profiling and
web personalization [Mobasher et al. 2000], web page dingtESmith and Ng 2003],
web caching and pre-fetching [Yang et al. 2001], and sewdral applications. In this
work, a broad definition of navigable systems is usedchwimcludes all systems that
provide information content to users, and also proviageeans for the users to move
around different sections of the system. The focushisf paper is the full temporal
representation of discovered navigational patterns repeesenting navigational patterns
as time series data. Such a representation would eadhletemporal analysis of the
discovered patterns, and improve the understanding of ttesrmt
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Furthermore, traditional applications of navigationatgrats (e.g., recommendation
systems, user clusteringtc.) can be designed with increased robustness if the tainpo
trends and characteristics of the patterns are takemansideration. Some recent works
have addressed the problem of modeling patterns as temglgjeaits [Baron and
Spiliopoulou 2001; Jin et al. 2002]. The techniques proposed ie theks achieve
partial temporal modeling of patterns (i.e., they do nepresent patterns as full time
series data with data points for each time unit). Tlgombottleneck in achieving full
temporal modeling with these techniques is that theybased on pattern discovery
algorithms that require pre-defined thresholds (e.g., suppdrtonfidence thresholds, or
other distance metrics). This paper addresses thismetk by proposing a frequent path
discovery algorithm that does not require pre-defined liotds.

The rest of the paper is organized as follows. Se&ipresents related work. Section
3 presents the proposed framework for full temporal reptasen of navigational
patterns and also discusses the proposed path mining tectimtjdees not make use of
pre-defined thresholds. Some motivating use cases foprbygosed framework are
presented in Section 4. Conclusions and areas of futukeame discussed in Section 5.

2. RELATED WORK

Researchers in different fields have studied user nasitgatpatterns extensively. Most
of the research works on navigational pattern discovesyever, are in the area of web
usage mining. Baron and Spiliopoulou [Baron and Spiliopoulou 200&$ept a
framework for monitoring temporal dynamics of discovaendlds. Researchers have long
acknowledged that rules change over time once the undgdgita sources change. Thus,
there are several works devoted to incremental appredoherowledge discovery (see
e.g. [Parthasarathy et al. 1999]). Incremental approaghresally address the problem of
finding new rules that have emerged with the changesfendataset, and removing
previously discovered rules that may no longer be sigmifidue to the changes in the
data. Baron and Spiliopoulou [Baron and Spiliopoulou 2001] hawangue that a rule
may be significant at a point in time, disappear atex [@oint in time, and reappear much
later. Thus, discovered rules may have inherent temmiratacteristics. The paper
however differs from the approach proposed in our resaarskveral ways. First, the
paper only studies the changes a rule may undergo when deeyimg data changes,
while in our research, inherent temporal trends irdtita irrespective of data-updates are
of interest. Second, the paper relies on existing rutodisy techniques for generating
significant rules at each update. These techniques maké siggport thresholds, thus all
rules that meet the threshold are lumped together amexdtthat timestamp while those
that do not meet the threshold have no existenceeatitie-stamp in question. This
approach has several limitations in temporal modelirgoviercome this shortcoming,
our research proposes a frequent-path discovery methpdef@rred navigational paths
that does not make use of support (or other pre-defineggthbids, thus, all patterns can
be represented as full, independent, temporal objectsall Aemporal representation is
necessary if the aim of applying conventional timéeseanalysis techniques to the
discovered rules is to be achieved.

Baron et al. [Baron et al. 2003] extend the work doneerdiaron and Spiliopoulou
2001] by proposing a technique for improving rule maintenaasedon monitoring the
temporal statistics of a subset of pre-discovered riiles.authors argue that changes in
the base dataset are normally represented in thstisstf rules at any given timestamp.
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Thus, instead of running computationally intensive dataimgi algorithms on the entire
dataset, the statistics of the pre-selected pattemsnanitored. The underlying data-
mining algorithm is only executed if there are significalmanges in the statistics of the
pre-selected rules being monitored. The paper may beasesrotivating an important
application area for temporal modeling of rules but ilimgted in its application and
addresses a problem that differs significantly frompttoblem addressed in our research.

Jin et al. [Jin et al. 2002] explore the concept of digtidm discovery in temporal
rules. This work is similar to some of the conceptsneefin [Baron and Spiliopoulou
2001]. The paper argues that local characteristics of tethpdes may have interesting
global distributions. Thus, if the series is broken imet segments, there may exist
distribution patterns in the resulting rules (i.e., a raky be frequent, then infrequent,
and frequent again, or a rule may only be frequent in siimamer). The major
distinguishing contribution of this paper is the developnoéseveral elegant techniques
for identifying suitable time segments for breaking up #eeies. The notions of
distribution in temporal rules used in this paper are sgmjar to some of the concepts
explored in our research. However, Jin et al. [Jin.e2@02] rely on specifying support
thresholds (similar to [Baron and Spiliopoulou 2001]), sdoiés not support the total
representation of rules as unique temporal objects, agrerplin our proposed
framework.

Li et al. [Lin et al. 2002] explore the correlation betwerules and temporal
segmentation (or calendar events), i.e., identifyingepas that cyclically occur at
particular points in the calendar. The technique is aphbased, and requires the
specification of the time segments of interest (itleg user has to specify if the rules
should be assessed on a day-month-year intatg), The goals of the paper are similar
in spirit to some of the goals set out in our framewdnkthat our approach is also
interested in identifying distribution and cyclical patterin rules. However, the
techniques proposed in our framework are not apriori-basedl,do not require any
knowledge of the underlying temporal segments (i.e., thedss not need to specify
that interesting patterns will be found if a daily oreldg correlation is useaktc).

Yang et al. [Yang et al. 2002] present techniques for extgrediquential web-usage
mining approaches to include a temporal dimension. Theatequestion addressed in
the paper can be summarized as follows: when (A, Byc@yrs, what is the next event
that is likely to occur? Furthermore, if D is the midstly event to occur after (A, B, C),
when will D occur? The authors use two sets of slidimgdaws to capture antecedent
and subsequent events (these techniques are typically usspture the reasonable
lengths of a user's memory), thus the technique mayidwed as a hybrid n-gram
approach [Su et al. 2000]. The focus of the paper, howewéarsdfrom the general
temporal modeling of navigational patterns studied in améwork.

Several other authors have proposed algorithms for ginweb usage patterns [Chen
et al. 1998; Pei et al. 2000; Sarukkai 2000; Srivastava et al. 2@0tpNulos and
Manolopoulos 2001etc] and sequential patterns [Srikant and Agrawal 1996]. These
algorithms are mostly driven by support thresholds, andatl@ddress issues related to
temporal modeling of navigational patterns as discussedriproposed framework.

3. METHODOLOGY

Baron and Spiliopoulou [Baron and Spiliopoulou 2001] present mefnark for
monitoring temporal dynamics of discovered rules. Unlike techniques used in
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incremental mining, the authors argue that a rule magigreficant at a point in time,

disappear at a later point in time, and reappear much Tetes, discovered rules may

have inherent temporal characteristics. We noted dati® 2 that the framework
presented in [Baron and Spiliopoulou 2001] is limited in itdlitabto represent
navigational patterns as full temporal objects. Our é&aork overcomes these
limitations. The basic steps in our framework areolie\fis:

1. Select criteria of interest for generating the tigegies from the navigational
patterns (for example, support count may be a criteriomt@fest).

2. Break-up the dataset based on some time segmentxdtople, given usage logs
for one year, we can choose to place the logs fdn dag into a group. Several
time-fragmentation strategies may be used. Multi-levehlysis may also be
employed if the time segmentation is organized into ephdierarchies (for
example, day — month — year). Note that this is equivdtettie usual temporal
referencing used in traditional time series analysisekample, stock-market data
may be collected and analyzed on a daily, monthlyearly basis.

3. Using a navigational pattern-discovery algorithm thaas not require “apriori” or
pre-defined thresholds (such as support thresholds), gea#ithte patterns in each
time segment of the dataset, generating the criteriatefest specified in step 1
alongside. We use the term “apriori” here to refer ltdhaesholds that must be
specified prior to (or at the early stages of) an aflyorirun.

4. Represent each pattern discovered in step 3 as adimeX=x,t=1, ..., n
wheret is an index of time stamps, andepresents the number of time fragments
specified in step 2. The entries in the time series thex’s) are the values for the
criterion of interest.

The result is a time series for each pattern, foh eaiterion of interest. For example,

given that the usage log is broken into monthly time segsiand the log was collected

over a one-year period. Also assume that “support-pegehisathe criterion of interest.

Each segment of the usage log is processed and support-pgeseate reported for each

pattern. Assuming ‘L', ‘Q’, and ‘R’ are objects (or vizlges) in the system, and “LLR",

“QQL", and “LL" are three patterns discovered from thisage-logs, the final

representations of these patterns would be in the fagiven in Table I.

Table I. An Example Representation of NavigationaldPatt as Time Series — using
percentage support as criterion of interest

Pattern Time Segment

1 2 3 4 5 6 7 8 9 1011 | 12
LLR 70 | 65 20 0 0 85 90 45 5 38 4 O
QQL 0 25 29 33 15 0 0 0 51 85 26 4p
LL 88 | 80 75 70 77 80 81 85 88 85 80 88

In Table I, the time series for pattern “LLR” shottsat it has 70% support in time
segment 1, 65% support in segmenét2, It can also be seen that pattern “LLR” has a
0% support in segments 4, 5, and 12. This means that tieenpdttes not exist in those
segments. Notice that this framework is based onliHi¢yao discover patterns without
using pre-defined thresholds. This means that all pateisting in the usage logs are
reported with their corresponding support counts (or othiarion of interest) for each
time segment. Existing approaches for mining navigatigoetterns require the
specification of some pre-defined threshold (usually a stighoeshold). Patterns that
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meet the threshold are then output by the system, whise that do not meet the
threshold are discarded. Such an approach is not suitatberf framework. To address
this, we propose an algorithm that discovers navigdtipatierns without pre-defined
thresholds. The proposed algorithm for discovering nawgati paths of users is
discussed in Section 3.1 below.

3.1 Discovering Navigational Paths of Users without Pre-defined Thresholds

The aim here is to find objects (or webpages) that ameessed together and the
navigational patterns frequently exhibited by the usetiseofystem. However, unlike the
existing algorithms, the algorithm proposed in this sacigonot based on a predefined
support (or other threshold). The technique presented discevers contiguous (or
consecutive) navigational patterns, a special casenst@ined navigational patterns in
which no gaps are allowed between discovered patterresphidposed technique is as
follows:

Step 1.) Define a unique symbol for each object/ web patiee system being analyzed.
Step 2.) Transform each user session into a striniteadls using the defined symbols
Step 3.) Build a generalized suffix tree (GST) [Gusfield 199Gnfthe string literals
obtained from transforming the user sessions. A suffig for a string of lengthn is a
rooted directed tree with exactiyeaves numbered 1 to The internal nodes of the tree,
besides the root node, must have at least two descenddr@ edges are labeled with
nonempty sub-strings of and no two edges originating from any particular node can
have edge-labels that start with the same charaEter.any leafi of the tree, the
concatenation of the edge-labels on the path fromabteto leafi results in the suffix of
stringx from positioni. Figure 1la shows the suffix tree for string “LLLR”. Aoptsignal
(%) is added to the end of the string to ensure explidinledes for all the suffixes of the
string. The root node is depicted by a shaded oval, temia nodes by unshaded ovals,
and the leaf nodes by rectangles. Each leaf node sathetaken by a particular suffix of
the sequence, and is named with the start positiorabéttifix. The label of each node is
the concatenation of all the edge-labels for the faiim the root to that node. To
represent multiple strings on a suffix tree, a generabafftk tree is built. For example,
given that three user sessions have been transform@dhie string literals “LLLR",
“QQLLL", and “LL", a generalized suffix tree can be buds follows: append a stop
symbol (e.g., ‘'$’) to all the strings; build a suffix tree the first string (i.e., “LLLR” as
shown in Figure 1a); traverse each of the remaininiggstrover the suffix tree in
sequence, adding new nodes, edges, and leaves as needeeafThedes in the
generalized suffix tree may be shared by suffixes fronemdifft strings; thus, a list of the
strings sharing the leaf nodes should be kept along witlcdhresponding suffix start
positions. However, the suffix start positions arematessary for the work discussed in
this paper (because we are only interested in countsigfie strings sharing the nodes).
Figure 1b shows an example of a generalized suffix tree fbwiit the strings “LLLR”,
“QQLLL", and “LL". Notice that the labels of the iatnal nodes represent repetitions in
the sequences.

In this work, the construction of the generalized suffee is adapted to capture
repeated patterns in the transformed user sessionsadiptations introduce two new
properties for each internal and leaf node in the stiffig. The first property istring
count which keeps a count of the number of strings (fromdifferent strings being
represented in the suffix tree) that have reached temial or leaf node in question.
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Figure la. Suffix tree for string Figure 1b. An example of a generalized suffix fore
“LLLR” with “$” appended as a stop the strings “LLLR”, “QQLLL", and “LL" with “$”
symbol appended to each string as a stop symbol

The second property iwst string which stores the identifier of the last string that
reached that internal or leaf node. T¢teng countandlast string properties are also
introduced for the edges in the suffix tree. Tast string property of each edge in the
suffix tree holds the identifier of the last string thralversed through that edge, while the
string countproperty accumulates the number of unique strings whoseesufiave
traversed through the edge.

When constructing the base suffix tree, i.e., the strfi& for the first string; if a new
internal or leaf node is createsiring countis set to 1 for that node, afabt stringis set
to the identifier of the first string (e.g., 1). Foethubsequent strings added to the suffix
tree after the base tree has been constructedgifranternal node is created, the node’s
string countis set to 1 4string countof edge broken to create the node if ldmt string
property of the edge being broken is different from tmmgtid of the current string
being added to the tree; however, if thst string property of the edge being broken is
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the same as the string-id of the current string beiltga to the tree, thestring countof
the new node is set to tring countof edge broken. Thiast stringproperty of the new
internal node is set to the identifier of the strieinly added. Thstring countproperty of
a new leaf node is always set to 1. Taest stringproperty of a new leaf node is set to the
identifier of the string being added. Each time a suffiarof string reaches an internal or
leaf node, if the identifier of the string from whitihe suffix is taken is greater than the
last string property of the node, the nodestring countis incremented by 1 and the
node’slast string property is updated to the identifier of the string pastingugh (or
reaching) that internal or leaf node. Similarly, etiote a suffix of any string reaches the
end of an edge, if the identifier of the string from ethihe suffix is taken is greater than
the last string property of the edge, the edgstsing countis incremented by 1 and the
edge’slast stringproperty is updated to the identifier of the string pastimgugh that
edge. (This assumes that the identifiers of the stangsinique, and that the strings are
included in the generalized suffix tree in increasing omfeidentifiers). Thus, the
adapted generalized suffix tree stores all the repeatedrnmattethe transformed user
sessions along with the count of user sessions timdhioosuch patterns. For example,
Figure 1b has 4 internal nodes (the unshaded ovals) witfoltbwing labels (recall that
the label of a node is the concatenation of alletige labels from the node to the root):

“Q"- traversed by string 2, i.estring count= 1

“L"- traversed by strings 1, 2, 3, i.atring count= 3

“LL"- traversed by strings 1, 2, 3, i.estring count= 3

“LLL"- traversed by strings 1, 2, i.estring count= 2

The example in Figure 1b is a case where all the repgatiéerns are captured by
internal nodes. In scenarios where two or more @essire exact matches, the leaf nodes
need to be accessed to capture all the repeated paftbuss.for a full enumeration of
repeated patterns, both internal and leaf nodes neesl ¢gatuated. For example, the
four strings “LQR”, “LQR”, “LQ" and “QR” with “$” appendedo each string as a stop
symbol are represented in the generalized suffix treerslvo Figure 2. The String ID’s
are 1, 2, 3, 4, for the four respective strings. The iedkes (as depicted in the Figure)
contain theString ID’sand suffix positions of all the suffixes ending at the@eetive leaf
nodes. The root node is the shaded oval, while the dedhavals are the internal nodes.
Figure 2 has two internal nodes (the unshaded ovals}hétfollowing labels (recall that
the label of a node is the concatenation of alletige labels from the node to the root):

“Q"- traversed by all 4 strings, i.estring count= 4

“LQ"- traversed by strings 1, 2, 3, i.stying count= 3

The rest of the repeated patterns can be retrieveddmiring the leaf nodes. We are
interested in the leaf nodes with adjoining leaf-edgashihve labels other than the stop
character ($), i.e., leaf nodes that contribute nevepat that have not been captured at
the internal nodes. Figure 2 has six leaf nodes witHallmving labels (the leaf nodes
are numbered in the Figure for ease of discussion):

Leaf 1: “LQR"- traversed by strings 1 and 2, istring count= 2

Leaf 2: “QR"- traversed by strings 1, 2, 4, igrjng count= 3

Leaf 3: “R"- traversed by strings 1, 2, 4, igring count= 3

Leaf 4: adds no new pattern other than the stop syt$ipol

Leaf 5: adds no new pattern other than the stop syt$ipol

Leaf 6: adds no new pattern other than the stop syt$ipol
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Figure 2. A generalized suffix tree with leaf-nadkevance for the strings “LQR”, “LQR”",
“LQ” and “QR” with “$” appended to each string astap symbol

Step 4.) At this stage in the process, all the navigatipatterns are output to a
database along with the count of user sessions in wheghoccur.

Step 5.) Patterns of interest may then be retrieved the database of navigational
patterns based on user-specified query parameters (e.g., tstpabis the number of
user sessions containing the pattern compared to #lentonber of user sessions).

We have implemented and tested the navigational patimgniechnique proposed in
this section. We utilized publicly available datasetsdar tests. All the tests reported
here were run on a notebook PC, with 1GHz Intel cel@mcessor and 240MB RAM,
running Windows XP home edition. The algorithms were @nnted in Java, and run
in the JBuilder 8 personal edition. Synthetic datasets wenerated using the publicly
available data generation program from the IBM Questuiétéing project, which has
been used in several web-usage mining studies [Pei2&iG0; Lu and Ezeife 2003]. The
following parameters are used to generate the data3gtsnyimber of sequences in the
database; |C| - average length of the sequencesy¢Bagea length of potentially frequent
sequences; and |N| - number of objects in the datadeseet |C| = 8; |S| = 4; |N| = 50;
and vary |D| from 10,000 to 100,000 navigational sequences. Weaoenthe
performance of our technique to the apriori-based techrdaudiscovering contiguous
navigational patterns [CPY98]. (Note that the tree-thasigorithms for discovering
navigational patterns [Pei et al. 2000; Lu and Ezeife 2003hatalifferentiate
contiguous navigational patterns, thus, we do not incluela tim our evaluations.) The
results of our experiments are reported in Table 1.

! http://www.almaden.ibm.com/cs/quest
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Table Il. Execution Times (in seconds) for Varying aise Sizes

Number of Navigational Sequences
10K | 20K | 30K | 40K | 50K | 60K | 70K | 80K | 90K | 100K

Adapted GST 22 | 41 6 8 99| 116] 13.§ 16 17.y 19/6

Apriori-based 10.1| 204 | 30.2| 40.3| 508 60.5 719 822 901 101
(at 10% support)

Apriori-based 50.1| 100.7| 156.1 207.p 265 297.9 366.4 440 467.1 514.3
(at 1% support)

We also tested the algorithms with publicly availallepnymous, real-world web
logs of “msnbc.com” users [Hettich and Bay 1999]. We setk¢he first 100,000
navigational sequences and ran the adapted GST algorithdntha& apriori-based
algorithm with 1% support threshold. The adapted GST algoriin in 29.3 seconds
while the apriori-based algorithm ran in 68.8 seconds atstipfport threshold. Our
results show that mining all contiguous navigational patautilizing the techniques
discussed in this paper performs well compared to the mxistchniques that make use
of support thresholds.

4. DISCUSSIONS AND MOTIVATING EXAMPLES

So far in this paper, we have introduced techniques ffwesenting navigational patterns
as full temporal objects (or time series). In thict®®, we present a few example
scenarios where the proposed techniques would be useful.

Impact analysis of marketing campaigns. Let us examine the case of an E-
commerce site. Generally, every E-commerce sitedvbalve some pages that are more
popular than others (e.g., the home page). It would bepprropriate strategy to place
marketing ads on the popular, more established pages. Foplexaan E-commerce
travel site may have a well-established flight-bookinginess with loyal customers.
Assuming the site also has a less popular hotel remmrsabusiness that it wants to
promote. The company may periodically offer a sales ptimm on the flight-reservation
page offering discounts on hotel reservations. An impobrtgcision-support scenario
here is to analyze the impact of the sales promatibiis expected that the traffic to the
hotel reservation page would increase with the salengiron. It may be of interest to
discover the trends in the navigation patterns befdtging, and after the sales
promotion. For instance, the business managers maytavigow if the sales promotions
increase the number of loyal customers to the hesarvation page. In cases where there
are no permanent markets/customers created, it mdyitke@st to know how long the
impact of the sales promotion was felt in the hotslervation site visits. This could be
used in the timing of subsequent promotions. Several atbenarios can also be
abstracted and analyzed.

Product/Page maturity analysis. In several websites (e.g., E-stores, University

departmentsetc), several individual pages on the site may represequarneal-world
concepts (e.g., products, peopitc). When new pages are added to the site, they are
often advertised in more popular pages (e.g., using bareméranced feature linkstc).
It may be of interest to study the usage trend to mwtufitnew pages — i.e.,
understanding the navigation to new pages from creatloa stable usage level. Such
analysis would help in monitoring the advertisementsthan popular pages to avoid
cluttering.
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Cluster migration/ interaction analysis. Navigational patterns have been
successfully applied to web user profiling and clusteringingresting extension to this
application of navigational patterns may involve studylmgformation and migration of
user clusters. For example, it may be interesting t@disaf the presence of particular
clusters lead to the formation of some other clustei(s., studying the temporal
causative relationships amongst user clusters. It nsaylbal interesting to know if some
clusters metamorphose into other clusters with time.

General temporal analysis. Several conventional temporal analysis techniques can
also be applied to the time series generated from naonghpatterns. Examples of such
analysis include causative and correlation analysises determining correlations
between patterns and if the presence of certain patteau to the existence of other
patterns. It may also be of interest to check for qucities or cycles in pattern
observations, or to discover emerging patterns, or simgripatternsetc. All these
analysis tasks would best be done in a wholesome frarkeas they may be related to
factors external to the system being studied (e.g., etiorindicatorsgetc).

5. CONCLUSIONS AND FUTURE WORK

Navigational patterns capture some useful behavioralrpatte# clients of E-commerce
sites. This paper advocates a paradigm shift in the veajgational patterns are
discovered and represented. The paper proposes that nanadapatterns can be
represented and treated as full temporal objects (or semnies data). To achieve full
temporal representation, the paper proposes a navigapattalmining algorithm that
does not make use of pre-defined thresholds. (Any pattarimgralgorithm that does not
make use of pre-defined thresholds can be plugged into thevirark proposed in this
research). The proposed framework enhances the analysiderstanding, and
interpretation of discovered navigational patterns. Tiaenework also enables the
integrated analysis of navigational patterns with exetime series data (such as
economic or market indicators). These benefits aslyeransferable to applications
based on navigational patterns (e.g., recommendatiosprmdization, user/ customer
profiling, etc), thus, improving E-commerce sites.

The path-mining algorithm presented in this work discowensecutive navigational
paths. An area of future work is to develop a path-miniiggrahm for constrained
navigational paths with gaps, that would not utilize préneefthresholds. It would also
be interesting to build prototypes for some of the apiiticaareas discussed in Section 4.
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