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In this paper we compute Bayes-Nash equilibria for first price single unit auctions and mth price
multi unit auctions, when the auction has a set of possible closing times, one of which is chosen
randomly for the auction to end at. Thus the auctions have one or more rounds of sealed bids.

We compute such equilibria for a wide range of assumptions and demonstrate the method used
by an agent to generate these strategies.
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1. INTRODUCTION

Auctions are becoming an increasingly popular method for transacting business either be-
tween individuals over the Internet (e.g. eBay) or even between businesses and their sup-
pliers. Auction theory provides us with some simple equilibria mostly for the case that a
single item is being sold or bought (see [Krishna 2002]). In order to examine the strategic
choices in a vastly more complex game, the Trading Agent Competition was introduced
(see [Wellman et al. 2001]). Different agents used different approaches to the problem (for
some of them see [Stone et al. 2002], or [Greenwald and Boyan 2001]). In [Vetsikas and
Selman 2003] the authors presented a principled methodology for systematically exploring
the space of bidding strategies for a complex game like TAC, where it is not possible to
find an equilibrium solution. To handle the complexity the authors decompose the problem
into sub-problems3; then the various strategies (for each sub-problem) are recombined to
generate the strategy that the agent uses.

In this paper, we concentrate on one of those sub-problems, the purchase of hotel rooms.
These auctions have a set of possible closing times, one of which is chosen randomly for
the auction to end at. They can be decomposed into one or more rounds, each of which is
defined by the intervals between possible closing times, andduring which agents submit
sealed bids. In this work, we present the basic steps towardscomputing the Bayes-Nash
equilibria that exist in such cases and compute several novel equilibria for these auctions.
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In particular, we present the analysis for the case when the auction hasR = 2 rounds.
In section 3, we compute equilibria for the single unit (firstprice) auction, whereas, in
section 4, we compute equilibria for the multi-unit (mth price) auction. In each case, we
initially examine the strategic interactions that exist ineach round separately, and then
use this knowledge in order to analyze the entire multi-round auction. As our stated goal
is to make use of the discovered equilibria in order to generate strategies that our agents
can use when participating in TAC, in [Vetsikas et al. 2007] we extend this work to fully
analyze the multi-round (R ≥ 2) case. This extension makes substantial usage of the basic
ideas and theorems presented in this paper. For example, theproof of theorem 4.1, which
examines the strategic interactions of one round of a multi-unit auctions, and which is only
presented in this paper, is used in [Vetsikas et al. 2007] in order to generate the equilibria
for the multi-unit auction with any number of rounds.

2. PROBLEM SETUP

The part of the TAC game that we are interested in are the hotelroom auctions. There are
m = 16 rooms available each night at each of the two available hotels. Rooms for each
of the days are sold by each hotel in separate, ascending, multi-unit, 16th-price auctions.
These auctions close at randomly determined times and more specifically a random auction
will close every minute throughout the game. No prior knowledge of the closing order
exists and agents may not resell rooms. Between closing times the agents may place bids,
but these are not opened until the next possible closing time; hence each round that takes
place between consecutive closing times is a sealed bid auction.

We assume thatN risk-neutral agents wish to buy1 unit of a certain good each. An
independent seller sellsm units of the desired good in anmth price auction, i.e. the good
is sold to the agents which submitted them highest bids at a price equal to the lowest
winning bid. The agents have valuations (utilities)ui which are i.i.d. with probability
distributionF (u) in the first round. Each agent know its own valuation and the distribution
F (u). There can be a second round with probability(1−p), wherep is known. If a second
round does exist, the agents have new i.i.d. utilitiesũi drawn from some distributionH(u)
and can submit new bids as long as they are greater or equal to the bid price from the end
of the first round. The assumptions about what each agenti knows about its utilitỹui at
the start of the game determine the different cases that we examine.

—ũi can be assumed to be known (and in fact in some of the theorems that follow it is
presumed that̃ui ≃ ui, i.e. thatũi andui have similar values); this is reasonable in
the case of TAC because usually there is a correlation between the valuation of the same
room over the course of the game.

—The agent might not know anything aboutũi other than that it is drawn fromH(u) (this
is the same information that it has about the other agent’s valuations).

—The agent might know something aboutũi. In TAC knowing the utilities at the previous
rounds can allow the agent to compute thatũi is drawn from a more “tight” and accurate
distributionG(u) instead ofH(u). One example of this is that the utility at a later round
is highly unlikely to decrease, so valuesũi < ui can be discarded.

The last rule of the auction is that agents may not subtract bids; this means that, if its
utility drops in a later round below the current bid price (which we will denoteQ), the
agent cannot withdraw its previous bid, but it can adjust it to the current bid price. The

ACM SIGecom Exchanges, Vol. 6, No. 2, 12 -2006.



Bayes-Nash Equilibria For mth Price Auctions With Multiple Closing Times · 29

effect of this is that if the priceQ is high enough that fewer thanm agents have utilities
ũi ≥ Q, the rest of the rooms are sold to a random selection of the winners of the previous
round which havẽui < Q and these agents lose money.

We will use the following functions in the theorems:

Φ(x) =
∑m−1

i=0 C(N − 1, i) ·
(
F (x)

)N−1−i
·
(
1 − F (x)

)i

Y (x) =
∑m−2

i=0 C(N − 1, i) ·
(
F (x)

)N−1−i
·
(
1 − F (x)

)i

Φ̃(x) =
∑m−1

i=0 C(N − 1, i) ·
(
H(x)

)N−1−i
·
(
1 − H(x)

)i

Ỹ (x) =
∑m−2

i=0 C(N − 1, i) ·
(
H(x)

)N−1−i
·
(
1 − H(x)

)i

In the case thatm = 1, it is Φ(x) =
(
F (x)

)N−1
, Φ̃(x) =

(
H(x)

)N−1
andY (x) = Ỹ (x) = 0.

Before we proceed with our analysis we need the following information, found in nu-
merical analysis textbooks (see [Atkinson and Han 2004]).

THEOREM 2.1. Letf(x, z) and ∂f(x,z)
∂z

be continuous functions ofx andz at all points
(x, z) in some neighborhood of the initial point(x0, Y0). Then there is a unique function
Y (x) defined on some interval[x0 − α, x0 + α], satisfying

Y ′(x) = f(x, Y (x)), ∀x : x0 − α ≤ x ≤ x0 + α and
Y (x0) = Y0

All the equilibria whenp 6= 1 are the solutions of differential equations of the form
described by theorem 2.1. This theorem guarantees the existence and unique solvability
of the initial value problem for those differential equations, which in turn means that the
equilibrium does exist and is unique. We may not know a closedform solution, but a
numerical solution can be easily calculated. The method that we decided to use is a4th

order Runge-Kutta method with variable step size; this is one of the most commonly used
methods. The requirement is that the functionf(x, z) and several (this depends on the
order of the Runge-Kutta method) of its derivatives be continuous in the interval for which
the solution is computed.

3. BAYES-NASH EQUILIBRIA FOR A SINGLE UNIT AUCTION

In this section, we present the equilibium analysis for the case when a single (m = 1)
item is sold to the agent which submitted the highest bid at a price equal to his bid. For
theorems 3.1 and 3.2, we assume that in the second round the utilities are drawn fromF (u)
and that̃ui ≃ ui. Each agenti submits a bidvi in the first round. It isQ = 0, if no bids
were placed, which is the case at the beginning of the first round, whereasQ > 0 equals
the current bid price in the beginning of the second round. Wecompute a Bayes-Nash
equilibriumg(u) that maps utilitiesui to bidsvi.

In the case ofp = 1 (only one round) andQ = 0, we know from auction theory
(e.g. [Krishna 2002]) that each risk-neutral agenti with valuationui should bid

g(ui) = ui −
1

(
F (ui)

)N−1
·

∫ ui

0

(
F (ω)

)N−1
· dω (1)

THEOREM 3.1. If the starting price isQ ≥ 0 and the bidding lasts for exactly one
round (p = 1) the equilibrium strategy is

g(ui) = ui −

∫ ui

Q

(
F (ω)

)N−1
· dω

(
F (ui)

)N−1
(2)
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PROOF. The proofs for this theorem, as well as most of the missing proofs from this
paper are presented in [Vetsikas et al. 2007]. Unabridged versions of all the proofs are
presented in [Vetsikas 2005].

THEOREM 3.2. If the starting price isQ = 0, a second round of bidding exists with
probability(1−p) (p 6= 0, 1) and the utility of the agents in the second round is drawn from
the same distributionF (u) (and each agenti in fact has utility of a similar value to the
utility ui of the first round) then the equilibrium strategy is the solution of the differential
equation

(
ui − g(ui)

)
·
Φ′(ui)

g′(ui)
= Φ(ui) · Ψ(g(ui)) (3)

whereΨ(x) = 1 + 1−p
p

·
(
F (x)

)N−1
,

and the boundary condition isg(0) = 0.

As a special case we can examine this equation when onlyN = 2 agents participate
and their valuationsui ∼ U [0, 1], which means thatF (u) = u,∀u ∈ [0, 1]. We need to
computevi = gp(ui),∀ui ∈ [0, 1]. Equation 3 becomes:

g
′

p(ui) =
ui − gp(ui)

ui ·
(
1 + 1−p

p
· gp(ui)

) (4)

Even this equation, which is the simplest form that we can have for the two round auction,
has no known closed form solution.
However, we can at least remove the parameterp from this computation. We can easily
verify thatgp(u) = p

1−p
· g̃( 1−p

p
·u), whereg̃(u) is the solution of d.e.̃g

′

(u) = u−g̃(u)
u·(1+g̃(u)) .

4. BAYES-NASH EQUILIBRIA FOR A MULTI-UNIT AUCTION

In this section, we present the equilibrium strategies for multi-unit auctions (m > 1). The
goods are sold to the agents which submitted them highest bids at a price equal to the
lowest winning bid. For theorems 4.1 and 4.2, we assume that in the second round the
utilities are drawn fromF (u) and thatũi ≃ ui, i.e. that the utility in the next round is
similar to the one in the current round. In theorem 4.3, we assume that the agent knows
that its own utilityũi is drawn fromG(u) and everyone else’s fromH(u).

THEOREM 4.1. If the starting price isQ ≥ 0 and the bidding lasts for exactly one
round (p = 1) the equilibrium strategy is

g(u) = u −
e
∫

u

Q

−Y ′(ω)
Φ(ω)−Y (ω)

·dω

Φ(u) − Y (u)
·

∫ u

Q

Φ(z) − Y (z)

e
∫

z

Q

−Y ′(ω)
Φ(ω)−Y (ω)

·dω
· dz (5)

PROOF. Q ≥ 0 because some bids may have already been placed, and thus (i) some
agents might have stopped participating in the auction, since the current priceQ exceeds
their private valuationui, and (ii) the probability distribution of the valuationsF (u) has
changed, since now we know that the valuation of agents that still participate isui ≥ Q.
The new probability distribution is
FQ(u) = Prob[U ≤ u|U ≥ Q] = Prob[U≤u∧U≥Q]

Prob[U≥Q] = F (u)−F (Q)
1−F (Q) . Therefore

FQ(u) =
F (u) − F (Q)

1 − F (Q)
, if u ≥ Q & FQ(u) = 0, if u < Q (6)
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We also know the probabilityπk of the event that exactlyk ∈ [1, N ] agents participate in
the auction at priceQ; it is the probability that exactlyk−1 of the other agents’ valuations4

ui areui ≥ Q, which is (see lemma 6.2).

πk = C(N − 1, k − 1) ·
(
F (Q)

)N−k
·
(
1 − F (Q)

)k−1
(7)

The probability distribution of an agent’s bid is:Prob[V ≤ v] = Prob[g(U) ≤ v] =
Prob[U ≤ g−1(v)] = F (g−1(v)).
Therefore the probability distribution of the(m − 1)th andmth highest bids (m > 1),
namedB(m−1) andB(m) respectively, among all otherN − 1 agents are:
Prob[B(m−1) 6 v] = Ŷ (g−1(v)) andProb[B(m) 6 v] = Φ̂(g−1(v)),

whereΦ̂(x) =
∑m−1

i=0 C(k − 1, i) ·
(
FQ(x)

)k−1−i
·
(
1 − FQ(x)

)i
and

Ŷ (x) =
∑m−2

i=0 C(k − 1, i) ·
(
FQ(x)

)k−1−i
·
(
1 − FQ(x)

)i
(see lemma 6.1).

If k ≤ m then the expected utility is:EUi(vi|#agents = k) = ui − Q.
If that is not the case, meaning thatk ≥ m andB(m−1) ≥ Q, then:
If B(m) > vi, then the agent gets utility0 (does not win). IfB(m−1) > vi ≥ B(m), then
the agent submitted themth price, so it gets1 unit (of them available units) and paysvi

getting a utility ofui − vi. If vi ≥ B(m−1) ≥ Q, then the agent gets1 unit and pays the
mth price, which isB(m−1), getting a utility ofui − B(m−1). The expected utility is
EUi(vi|#agents = k) = (ui − vi) · Prob[B(m−1) > vi ≥ B(m)]

+
∫ vi

Q
(ui − ω) · Prob[B(m−1) = ω] · dω =

(ui − vi) ·
(
Prob[B(m) ≤ vi] − Prob[B(m−1) ≤ vi]

)

+
∫ vi

Q
(ui−vi) ·Prob[B(m−1) = ω] ·dω+

∫ vi

Q
(vi−ω) ·Prob[B(m−1) = ω] ·dω =

(ui − vi) ·
(
Prob[B(m)≤vi] − Prob[B(m−1) ≤ vi]

)

+(ui − vi) · Prob[B(m−1) ≤ vi] +
∫ vi

Q
(vi − ω) · d

dω
Prob[B(m−1) ≤ ω] · dω =

(ui − vi) · Prob[B(m) ≤ vi] + vi ·
∫ vi

Q
d

dω
Prob[B(m−1) ≤ ω] · dω

−
∫ vi

Q
ω · d

dω
Prob[B(m−1) ≤ ω] · dω ⇔

EUi(vi|#agents = k) = (ui − vi) · Φ̂(g−1(vi)) + vi · Ŷ (g−1(vi))

−
∫ vi

Q
ω ·

(
Ŷ (g−1(ω))

)′
· dω

Note that
∫ vi

Q
ω ·

(
Ŷ (g−1(ω))

)′
· dω = vi · Ŷ (g−1(vi))−

∫ vi

Q
(ω)′ · Ŷ (g−1(ω)) · dω, thus

EUi(vi|#agents = k) = (ui − vi) · Φ̂(g−1(vi)) +

∫ vi

Q

Ŷ (g−1(ω)) · dω (8)

This equation covers also the case thatk ≤ m, since then it iŝΦ(u) = Ŷ (u) = 1,∀u ≥ Q.
EUi(vi) =

∑N
k=1 πk · EUi(vi|#agents = k) ⇒

EUi(vi) = (ui − vi) · Φ(g−1(vi)) +

∫ vi

Q

Y (g−1(ω)) · dω (9)

whereΦ(x) =
∑N

k=1 πk ·
∑m−1

i=0 C(k − 1, i) ·
(
FQ(x)

)k−1−i
·
(
1 − FQ(x)

)i
=

∑m−1
i=0

∑N
k=i+1 πk · C(k − 1, i) ·

(
FQ(x)

)k−1−i
·
(
1 − FQ(x)

)i

andY (x) =
∑N

k=1 πk ·
∑m−2

i=0 C(k − 1, i) ·
(
FQ(x)

)k−1−i
·
(
1 − FQ(x)

)i
=

∑m−2
i=0

∑N
k=i+1 πk · C(k − 1, i) ·

(
FQ(x)

)k−1−i
·
(
1 − FQ(x)

)i

It is C(k − 1, i) = 0, if k ≤ i and this is the reason why we changed the lower bound of

4Because from the point of view of a participating agent it does not know whether the otherN − 1 agents
participate.
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the sum fork from 1 to i + 1.
We will use the fact thatC(k−1, i) ·C(N −1, k−1) = C(N −1−i,N −k) ·C(N −1, i).
Substituting from equations 6 and 7 and for anyi ∈ [0,m − 1] andx ≥ Q it is:∑N

k=i+1 πk · C(k − 1, i) ·
(
FQ(x)

)k−1−i
·
(
1 − FQ(x)

)i
=

∑N

k=i+1 C(k−1, i)·C(N−1, k−1)·(F (Q))N−k ·(1−F (Q))k−1 ·(F (x)−F (Q)
1−F (Q)

)k−1−i ·( 1−F (x)
1−F (Q)

)i

=
∑N

k=i+1 C(N − 1− i, N − k) ·C(N − 1, i) · (F (Q))N−k · (F (x)−F (Q))k−1−i · (1−F (x))i

= C(N − 1, i) · (1−F (x))i ·
∑N

k=i+1 C(N − 1− i, N − k) · (F (Q))N−k · (F (x)−F (Q))k−1−i

= C(N − 1, i) · (1 − F (x))i

·
∑N−i−1

λ=0 C(N − 1− i, N − i− 1− λ) · (F (Q))N−i−1−λ · (F (x)−F (Q))λ

= C(N − 1, i) · (1 − F (x))i · (F (x))N−1−i

ThereforeΦ(x) =
∑m−1

i=0 C(N − 1, i) ·
(
F (x)

)N−1−i
·
(
1 − F (x)

)i

andY (x) =
∑m−2

i=0 C(N − 1, i) ·
(
F (x)

)N−1−i
·
(
1 − F (x)

)i
.

Note if x < Q, thenΦ(x) = Y (x) = 0 and thusEUi(vi) = 0.
The bidvi that maximizesEUi(vi) can be found by setting
dEUi(vi)

dvi
= 0 ⇔ −Φ(g−1(vi)) + (ui − vi) ·

Φ′(g−1(vi))
g′(g−1(vi))

+ Y (g−1(vi)) = 0.
Sincevi = g(ui), the previous equation becomes

−Φ(ui) +
(
ui − g(ui)

)
· Φ′(ui)

g′(ui)
+ Y (ui) = 0.

The functiong(u) that satisfies this equation is the same as equation 5 (use lemma 6.3 with
T (u) = Φ(u) − Ψ(u)) given that the boundary condition isg(Q) = Q. �

BecauseΦ andY areΦ(x) =
∑m−1

i=0 C(N − 1, i) ·
(
F (x)

)N−1−i
·
(
1 − F (x)

)i
and

Y (x) =
∑m−2

i=0 C(N − 1, i) ·
(
F (x)

)N−1−i
·
(
1− F (x)

)i
we can simplify equation 5 to:

g(u) = u − (F (u))−(N−m) ·

∫ u

Q

(F (z))N−m · dz

Note that equation 9 can be written asEUi(vi) = (ui−vi)·Φ(g−1(vi))+
∫ g−1(vi)

Q
Y (u)·

g′(u) · du and the maximal expected utilityU(ui, Q) of agenti is therefore
U(ui, Q) = EUi(vi)

∣∣
vi=g(ui)

⇔

U(ui, Q) =
(
ui − g(ui)

)
· Φ(ui) +

∫ ui

Q

Y (ω) · g′(ω) · dω (10)

We will use this utility in the next theorems, and in the complete analysis of the fullR-
round case (whenR ≥ 2), which is presented in [Vetsikas et al. 2007].

THEOREM 4.2. If the starting price isQ = 0, a second round of bidding exists with
probability (1 − p) (p 6= 0, 1), the utility of the agents in the second round is drawn from
the same distributionF (u) and each agenti in fact has utility in the second round̃ui ≃ ui,
then the equilibrium strategy is the solution of the differential equation

(
ui − g(ui)

)
·
Φ′(ui)

g′(ui)
=

(
Φ(ui) − Y (ui)

)
· Ψ(ui, g(ui)) (11)

where

Ψ(ui, Q) = 1 + 1−p
p

· Φ(Q)−Y (Q)
Φ(ui)−Y (ui)

· e
∫ ui

Q

−Y ′(ω)
Φ(ω)−Y (ω)

·dω ·
(
Φ(ui) +

∫ ui

Q

Y (ω)·Φ′(ω)
Φ(ω)−Y (ω) · dω

)
,

and the boundary condition isg(0) = 0.

PROOF. The proof is presented in [Vetsikas et al. 2007].
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THEOREM 4.3. If the starting price isQ = 0, a second round of bidding exists with
probability (1 − p) (p 6= 0, 1), the utility of the other agents in the second round is drawn
from distributionH(u), and each agenti knows (more accurately for itself) that its own
utility ũi is drawn from distributionG(u), then the equilibrium strategy is the solution of
the differential equation

(
ui − g(ui) +

1 − p

p
· UL(g(ui))

)
·
Φ′(ui)

g′(ui)
=

(
Φ(ui) − Y (ui)

)
· Ψ(g(ui)) (12)

whereΨ(Q) is given by equation 15 andUL(Q) by equation 13.
The boundary condition isg(0) = 0.

PROOF. Initially we must compute the expected gain of utility (actually it’s negative, so
it’s a loss)UL(Q), if the agent is a winner in the first round and in the second hisutility ũi <

Q. The agent is forced (by the rules) to keep a bid of at leastQ in the auction; so it puts a bid
ṽi = Q. Let us assume that exactlyk of the other agents wish to buy the goods. Ifk ≥ m

there is no problem, and the utility difference is0. However ifk < m, there are(m − k)
units that must be sold randomly to some of the previous winners. We can compute that the
probability of getting a room in this case is equal toN ·(m−k)

m·(N−k) .5 The probability thatk of

the other agents will have utilities̃uj ≥ Q is C(N − 1, k) ·
(
H(Q)

)N−1−k
·
(
1−H(Q)

)k

(see lemma 6.2) and, if selected, the utility difference isũi − Q. Thus the expected utility
differenceUL(ũi, Q) is

UL(ũi, Q) =

m−1∑

k=0

{N · (m − k)

m · (N − k)
·C(N −1, k) ·

(
H(Q)

)N−1−k
·
(
1−H(Q)

)k
·(ũi−Q)

}

if ũi < Q.
If ũi ≥ Q, then we can’t have this case, since the agent would wish to participate. Since
the value of the utilitỹui is not known, but the distributionG(u), from which it is drawn,
is the total utility difference (loss actually), because offorced bidding of the agents that
won the first round, isUL(Q) =

∫ Q

0
UL(ũi, Q) · Prob[ũi = ω] · dω.

Note also that
∫ Q

0
(ũi − Q) · Prob[ũi = ω] · dω =

∫ Q

0
G(ω) · dω.

It is therefore

UL(Q) = −

m−1∑

k=0

{N · (m − k)

m · (N − k)
·C(N−1, k)·

(
H(Q)

)N−1−k
·
(
1−H(Q)

)k
·

∫ Q

0

G(ω)·dω
}

(13)

The expected utility for the agent at the second round (without the inclusion of the utility
difference stated in equation 13) is̃U(Q) =

∫ +∞

Q
U(ω,Q) · Prob[ũi = ω] · dω. This

is because, if̃ui < Q, then the utility gained is0. If ũi ≥ Q, then the utility gained is
U(ω,Q), and it is computed by equations 5 and 10, in whichΦ(x) andY (x) are replaced

by Φ̃(x) =
∑m−1

i=0 C(N − 1, i) ·
(
H(x)

)N−1−i
·
(
1 − H(x)

)i
and

Ỹ (x) =
∑m−2

i=0 C(N − 1, i) ·
(
H(x)

)N−1−i
·
(
1 − H(x)

)i
.

Both utilities Ũ(Q) andUL(Q) depend on the priceQ at the start of the second round,
which in turn depends on the bids placed in the first round.
If B(m) > vi thenQ = B(m); in this case the agent does not win in the first round, so there

5This is bigger thanm−k
m

, because some of thek agents might have been winners on the first round as well.
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is no utility loss in the second round. IfB(m−1) > vi ≥ B(m), then the agent submitted
themth price, soQ = vi, and if vi ≥ B(m−1), thenQ = B(m−1); in both these cases
there is an expected loss in the second round.
Note thatProb[B(m−1) 6 v] = Y (g−1(v)) andProb[B(m) 6 v] = Φ(g−1(v)) (see proof
of theorem 4.1), and thatProb[Q = vi] = Prob[B(m−1) > vi ≥ B(m)] =
Prob[B(m) ≤ vi] − Prob[B(m−1) ≤ vi] = Φ(g−1(v)) − Y (g−1(v)).
As a result we can now compute the expected utility, if a second round does exist,U (2)

i as
follows:
U

(2)
i =

∫ ui

0
U(ω) · Prob[Q = ω] · dω =

∫ vi
−

0

(
Ũ(ω) + UL(ω)

)
· Prob[Q = ω] · dω +

(
Ũ(vi) + UL(vi)

)
· Prob[Q = vi]

+
∫ ui

vi
+ Ũ(ω) · Prob[Q = ω] · dω ⇔

U
(2)
i =

∫ vi

0

(
Ũ(ω) + UL(ω)

)
· d

dω
Y (g−1(ω)) · dω

+
(
Ũ(vi)+UL(vi)

)
·
{
Φ(g−1(vi))−Y (g−1(vi))

}
+

∫ ui

vi
Ũ(ω)· d

dω
Φ(g−1(ω))·dω

The expected utility if the auction closes at the first roundU
(1)
i is given by equation 9 when

Q = 0 is inserted, since the price isQ = 0 at the beginning of the first round.
The expected utility for both rounds isEUi(vi) = p · U

(1)
i + (1 − p) · U

(2)
i ⇔

(14)
EUi(vi) = p ·

{
(ui − vi) · Φ(g−1(vi)) +

∫ vi

0
Y (g−1(ω)) · dω

}

+(1 − p) ·
{ ∫ vi

0

(
Ũ(ω) + UL(ω)

)
· d

dω
Y (g−1(ω)) · dω

+
(
Ũ(vi)+UL(vi)

)
·
{
Φ(g−1(vi))−Y (g−1(vi))

}
+

∫ ui

vi
Ũ(ω) · d

dω
Φ(g−1(ω)) ·dω

}

We find the equilibrium by settingdUi(vi)
dvi

= 0 and then substitutingvi = g(ui). In the
end we get

(ui−g(ui)+
1 − p

p
·UL(g(ui)))·

Φ′(ui)

g′(ui)
= (1−

1 − p

p
·(Ũ ′(g(ui))+U

′

L(g(ui))))·(Φ(ui)−Y (ui))

Let us setΨ(Q) = 1 − 1−p

p
· (Ũ ′(Q) + U ′

L(Q)), therefore

Ψ(Q) = 1+ 1−p

p
·
{ ∫ +∞

Q
G′(z) · Φ̃(Q)−Ỹ (Q)

Φ̃(z)−Ỹ (z)
·e

∫
z
Q

−Ỹ ′(ω)

Φ̃(ω)−Ỹ (ω)
·dω

·(Φ̃(z)+
∫ z

Q

Ỹ (ω)·Φ̃′(ω)

Φ̃(ω)−Ỹ (ω)
·dω) ·dz+

∑m−1
k=0

N·(m−k)
m·(N−k)

·C(N − 1, k) · {(N−1−k)·H ′(Q)·
(
H(Q)

)N−2−k
·
(
1−H(Q)

)k
·
∫ Q

0
G(ω) · dω

−k ·H ′(Q) ·
(
H(Q)

)N−1−k
·
(
1−H(Q)

)(k−1)
·
∫ Q

0
G(ω) · dω

+
(
H(Q)

)N−1−k
·
(
1 − H(Q)

)k
· G(Q)}

}

(15)

whereΦ̃(x) =
∑m−1

i=0 C(N −1, i) · (H(x))N−1−i · (1−H(x))i andỸ (x) =
∑m−2

i=0 C(N −1, i) ·
(H(x))N−1−i · (1 − H(x))i. Then the differential equation becomes

(ui − g(ui) +
1 − p

p
· UL(g(ui))) ·

Φ′(ui)

g′(ui)
= (Φ(ui) − Y (ui)) · Ψ(g(ui))

The boundary condition isg(0) = 0. �

5. DISCUSSION AND CONCLUSIONS

To summarize, in this paper we concentrated on auctions thathave a set of possible closing
times, one of which is chosen randomly for the auction to end at. These auctions can be
decomposed into one or more rounds, during which the auctionis treated as sealed bid. We
analyzed the Bayes-Nash equilibria that exist in such casesand computed several “novel”
equilibria for these auctions. We computed equilibria for auctions that sell1 or several
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identical items, and we demonstrated the methodology used to compute the equilibria in
these cases.

In [Vetsikas et al. 2007], we use the same methodology that weapplied in sections 3
and 4, in order to derive the systems of differential equations whose solution constitutes a
Bayes-Nash equilibrium for the general case of an auction with multiple possible closing
times, and not just two, as was the case in the theorems that were presented here. We
break the auction into more rounds, compute the utility for the last two rounds (e.g. solv-
ing equation 12 and then substituting in equation 14), and then recursively compute the
expected utilities for the previous rounds, using the last utility function as the next round’s
utility function, until the first round is reached. In addition we describe the algorithm used
in order to solve this system, and present equilibria both for a uniform distribution and a
distribution that approximates the values of hotel rooms during the TAC game.6 We use
this later equilibrium strategy in our TAC agent.

We are currently working towards extending the results presented here and in [Vetsikas
et al. 2007], in various ways. We examine the equilibria present in the case of multi-
demand auctions; this would allow us to remove the current restriction that each agent
must bid for a single item. In addition, we are interested in the change that occurs in
the equilibrium strategies, when each agent wishes not onlyto maximize its own profit,
but also to minimize the profit of its opponents, which is morerealistic for a competition
setting, like TAC. We plan to incorporate these extensions in our analysis in order to further
improve our TAC agents.

6. APPENDIX
LEMMA 6.1. If random variablesXi,∀i ∈ {1, . . . , N} are i.i.d. with probability dis-

tribution f(x) = Prob[Xi 6 x] andY
(k)
N denotes thekth order statistic of the variables

Xi, then

Prob[Y
(k)
N 6 y] =

k−1∑

i=0

C(N, i) · (f(y))N−i · (1 − f(y))i

whereC(N, i) is the total number of possible combinations ofi items chosen fromN .
LEMMA 6.2. If random variablesXi,∀i ∈ {1, . . . , N} are i.i.d. with probability dis-

tribution f(x) = Prob[Xi 6 x], then the probabilitypk that exactlyk of these variables
Xi ≥ T is

pk = C(N, k) · (f(T ))N−k · (1 − f(T ))k

PROOF. Both of these lemmas can be found in any probabilities book (e.g. [Rice 1995]).
LEMMA 6.3. A functiong(u) that satisfies the equation

(u − g(u)) · Φ′(u)
g′(u) = T (u) is the following

g(u) = u −
Ω(u)

T (u)
·

∫ u

C

T (ω)

Ω(ω)
· dω

whereΩ(u) = e
∫

u

D

T ′(ω)−Φ′(ω)
T (ω)

·dω, C depends on the boundary conditions andD can have
any value.

PROOF. All that is needed to do is to replaceg(u) in the differential equation with the
formula provided and check that the two sides of the equationare indeed equal.

6This distribution is generated by collecting the utilitiesof the hotel rooms from a large number of actual games
and thus we can estimate the distributionsF (u), G(u), H(u) that we use in the formulas for the equilibria.
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