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In this paper we compute Bayes-Nash equilibria for first price single unit auctions and m*" price
multi unit auctions, when the auction has a set of possible closing times, one of which is chosen
randomly for the auction to end at. Thus the auctions have one or more rounds of sealed bids.
We compute such equilibria for a wide range of assumptions and demonstrate the method used
by an agent to generate these strategies.
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1. INTRODUCTION

Auctions are becoming an increasingly popular method fordacting business either be-
tween individuals over the Internet (e.g. eBay) or even betwbusinesses and their sup-
pliers. Auction theory provides us with some simple equidibmostly for the case that a
single item is being sold or bought (see [Krishna 2002]). faheo to examine the strategic
choices in a vastly more complex game, the Trading Agent @oitgm was introduced
(see [Wellman et al. 2001]). Different agents used diffeegaproaches to the problem (for
some of them see [Stone et al. 2002], or [Greenwald and Bo§@a]2 In [Vetsikas and
Selman 2003] the authors presented a principled methogdéogystematically exploring
the space of bidding strategies for a complex game like TAREm it is not possible to
find an equilibrium solution. To handle the complexity théhaus decompose the problem
into sub-problemy then the various strategies (for each sub-problem) a@mbined to
generate the strategy that the agent uses.

In this paper, we concentrate on one of those sub-problémgurchase of hotel rooms.
These auctions have a set of possible closing times, one ishvidichosen randomly for
the auction to end at. They can be decomposed into one or manes, each of which is
defined by the intervals between possible closing times,damishg which agents submit
sealed bids. In this work, we present the basic steps toveamaputing the Bayes-Nash
equilibria that exist in such cases and compute several eonglibria for these auctions.
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28 . Vetsikas and Selman

In particular, we present the analysis for the case when ulbtam hasR = 2 rounds.

In section 3, we compute equilibria for the single unit (fipsice) auction, whereas, in
section 4, we compute equilibria for the multi-unit{* price) auction. In each case, we
initially examine the strategic interactions that existeimch round separately, and then
use this knowledge in order to analyze the entire multi-cbanction. As our stated goal
is to make use of the discovered equilibria in order to gerestrategies that our agents
can use when participating in TAC, in [Vetsikas et al. 200€] extend this work to fully
analyze the multi-roundK > 2) case. This extension makes substantial usage of the basic
ideas and theorems presented in this paper. For examplprdbgof theorem 4.1, which
examines the strategic interactions of one round of a nomitiauctions, and which is only
presented in this paper, is used in [Vetsikas et al. 2007tderdto generate the equilibria
for the multi-unit auction with any number of rounds.

2. PROBLEM SETUP

The part of the TAC game that we are interested in are the hmteh auctions. There are
m = 16 rooms available each night at each of the two available iofeboms for each
of the days are sold by each hotel in separate, ascending;unit| 16'"*-price auctions.
These auctions close at randomly determined times and rpecodigally a random auction
will close every minute throughout the game. No prior knalge of the closing order
exists and agents may not resell rooms. Between closing tiheeagents may place bids,
but these are not opened until the next possible closing firmece each round that takes
place between consecutive closing times is a sealed bigauct

We assume thad risk-neutral agents wish to buly unit of a certain good each. An
independent seller selis units of the desired good in an®" price auction, i.e. the good
is sold to the agents which submitted thehighest bids at a price equal to the lowest
winning bid. The agents have valuations (utilitieg)which are i.i.d. with probability
distributionF'(u) in the first round. Each agent know its own valuation and th&ibution
F(u). There can be a second round with probability- p), wherep is known. If a second
round does exist, the agents have new i.i.d. utiliiedrawn from some distributiof (u)
and can submit new bids as long as they are greater or equed twd price from the end
of the first round. The assumptions about what each aglembws about its utilityu; at
the start of the game determine the different cases that amiee.

—u; can be assumed to be known (and in fact in some of the theoteh$otlow it is
presumed that;; ~ u;, i.e. thatu; andu; have similar values); this is reasonable in
the case of TAC because usually there is a correlation bettirevaluation of the same
room over the course of the game.

—The agent might not know anything abaytother than that it is drawn frorff (u) (this
is the same information that it has about the other agenitmtians).

—The agent might know something abaut In TAC knowing the utilities at the previous
rounds can allow the agent to compute thgis drawn from a more “tight” and accurate
distributionG(u) instead ofH (u). One example of this is that the utility at a later round
is highly unlikely to decrease, so values< u; can be discarded.

The last rule of the auction is that agents may not subtralst; this means that, if its
utility drops in a later round below the current bid price {@hwe will denote@), the
agent cannot withdraw its previous bid, but it can adjusb ithte current bid price. The
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effect of this is that if the pric&) is high enough that fewer than agents have utilities
u; > @, the rest of the rooms are sold to a random selection of theewnof the previous
round which havér; < @ and these agents lose money.

We will use the following functions in the theorems:

O(z) = S0 C(N = 1,0) - (F(@) " (1= F)

Y(z) = iy’ OV = L,1) - (P ()" 77 (1= F(a)’

bla) = X7 C(N 1. (H@)" 7 (1= H()'

V()= CN - 1,0) - (H() Y ZN( — H(z))' )
®(z) = (F())" ", &(x) = (H(z))" " andY (z) = Y (z) = 0.

In the case thah =1,itis

Before we proceed with our analysis we need the followingrimfation, found in nu-
merical analysis textbooks (see [Atkinson and Han 2004]).

THEOREM 2.1. Let f(z, 2) and% be continuous functions afandz at all points
(z, z) in some neighborhood of the initial poift,, Yy). Then there is a unique function
Y (z) defined on some intervat, — a, zo + o], satisfying

Y'(z) = f(z,Y(2)), Ve:zo—a<z<z9+a and
Y(zo) = Yo

All the equilibria whenp # 1 are the solutions of differential equations of the form
described by theorem 2.1. This theorem guarantees theeegestind unique solvability
of the initial value problem for those differential equaisp which in turn means that the
equilibrium does exist and is unique. We may not know a cldeesh solution, but a
numerical solution can be easily calculated. The methotivilkadecided to use is 4"
order Runge-Kutta method with variable step size; this i afithe most commonly used
methods. The requirement is that the functiffx, z) and several (this depends on the
order of the Runge-Kutta method) of its derivatives be cardis in the interval for which
the solution is computed.

3. BAYES-NASH EQUILIBRIA FOR A SINGLE UNIT AUCTION

In this section, we present the equilibium analysis for theecwhen a singler{ = 1)
item is sold to the agent which submitted the highest bid aiceequal to his bid. For
theorems 3.1 and 3.2, we assume that in the second roundlifiesware drawn fromF'(u)
and thatu; ~ ;. Each agent submits a bidy; in the first round. It isQ = 0, if no bids
were placed, which is the case at the beginning of the firsidpwhereas) > 0 equals
the current bid price in the beginning of the second round. cdfapute a Bayes-Nash
equilibriumg(u) that maps utilities:; to bidsw;.

In the case o = 1 (only one round) and) = 0, we know from auction theory
(e.g. [Krishna 2002]) that each risk-neutral agewith valuationu; should bid

1 b N-1
glug) =u; — ————x— - / (F(W)) - dw 1)
(P)™ " o

THEOREM 3.1. If the starting price isQQ > 0 and the bidding lasts for exactly one
round (p = 1) the equilibrium strategy is

g(u;) = vy — ()
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PrROOF The proofs for this theorem, as well as most of the missirmigrfrom this
paper are presented in [Vetsikas et al. 2007]. Unabridgesiores of all the proofs are
presented in [Vetsikas 2005].

THEOREM 3.2. If the starting price isQ = 0, a second round of bidding exists with
probability (1—p) (p # 0, 1) and the utility of the agents in the second round is drawmfro
the same distributior¥'(u) (and each agent in fact has utility of a similar value to the
utility u; of the first round) then the equilibrium strategy is the siolutof the differential
equation

(ui - g(uz)) :

whereU (z) =1+ 22 - (Fx)V

and the boundary condition ig0) = 0.

= ®(ui) - W(g(ui)) (3)

As a special case we can examine this equation when ®nl¢ 2 agents participate
and their valuations, ~ U|0, 1], which means thaf'(u) = u,Vu € [0,1]. We need to
computeyv; = g,(u;), Yu; € [0,1]. Equation 3 becomes:

") = u; — gp(us) 4
9p (i) u; - (1+ 1].%1) - gp(us)) X

Even this equation, which is the simplest form that we caretiarvthe two round auction,

has no known closed form solution.

However, we can at least remove the paramgt#om this computation. We can easily
~r1—

verify thatg, (u) = 1£- -§(=2 -u), whereg(u) is the solution of d.eg (u) = u-?%ﬁ(zz))'

4. BAYES-NASH EQUILIBRIA FOR A MULTI-UNIT AUCTION

In this section, we present the equilibrium strategies faltirunit auctions (n > 1). The
goods are sold to the agents which submittedrthiighest bids at a price equal to the
lowest winning bid. For theorems 4.1 and 4.2, we assume thttei second round the
utilities are drawn from#'(u) and thatu; ~ wu;, i.e. that the utility in the next round is
similar to the one in the current round. In theorem 4.3, weiassthat the agent knows
that its own utilityz; is drawn fromG(u) and everyone else’s froff (u).

THEOREM 4.1. If the starting price isQ > 0 and the bidding lasts for exactly one
round (p = 1) the equilibrium strategy is

I8 so=mde v gy
e / (x)=Y(z) .

() V() ®)

g(u) =u— T
Q el 7@ Vi
PROOE @ > 0 because some bids may have already been placed, and thom§) s
agents might have stopped participating in the auctiortesihe current pric€) exceeds
their private valuation:;, and (ii) the probability distribution of the valuatiod&(«) has
changed, since now we know that the valuation of agents tiligvarticipate isu; > Q.
The new probability distribution is
Fg(u) = ProblU <u|U > Q| = Propbgﬁggg]zm = F(lqi);fg?). Therefore
Fu) - F(Q) .
yifu>Q& Fo(u) =0, if u< 6
g vz Qe Fow =0, if u<Q (6)
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We also know the probability,, of the event that exactly € [1, N] agents participate in
the auction at pric€); it is the probability that exactly — 1 of the other agents’ valuatiohs
u; areu; > (), which is (see lemma 6.2).
k—1
m,=C(N - 1k—-1)- (F(Q)) -(1-F(Q) (7)
The probability distribution of an agent’s bid iBrob[V < v] = Problg(U) < v] =
Prob[U < g='(v)] = F(g~'(v)).
Therefore the probability distribution of then — 1)** andm®" highest bids ¢ > 1),
namedB(™~1) and B(™) respecuvely, among all othé¥ — 1 agents are:
Prob[B=1) < v] =Y (g7 (v)) and Prob[ B < v] = <I>(g_1(_v)),
whered () = 701 C(k — 1,4) - (Fo(x))* 7" (1 = Fy(x)) and
V(z)= Y72 C—1,4) - (Fo@) 7" (1 - Fo(x))' (see lemma 6.1).
If & < m then the expected utility iSEU; (v;|#agents = k) = u; — Q.
If that is not the case, meaning that- m andB("~1 > @, then:
If B(™ > v;, then the agent gets utility (does not win). IfB(™~1) > ¢; > B(™) then
the agent submitted the!” price, so it getd unit (of them available units) and pays
getting a utility ofu; — v;. If v; > B(™=1 > (, then the agent getsunit and pays the
mt" price, which isB(™~1), getting a utility ofu; — B(™~1). The expected utility is
EU;(vi|#agents = k) = (u; — v;) - Prob[Bm=1Y > v; > B(™)]
+ fm (u; — w) Prob[B(m_l) =w] dw=

(ui — v;) - (Prob[B™ < v;] — Prob[B(m D <y ])

—l—f“’ (u; —v;) - Prob[B™ =1 = ) dw—i—f i —w) - Prob[BMm=Y = u].dw =
(u; — ;) - (Pmb[B(m) <w;] = Prob[B(m=1) <y, ])

+(u; — v;) - Prob[Bm=Y < ;] + fél (vi — w) - 2L Prob[B™m~1) < w] - dw =
(u; — v;) - Prob[B(™ < v;] 4+ v; - [ iPmb[B(mfl) <w] - dw

(S’w 4 Prop[BMm=Y < w] - dw

EU;(vi|#agents = k) = (ui —vi) - (g™ (v5)) + vi - ¥ (97" (v1))
—Jg'w (Vg7 () - dw
Note thatf ( (g7 H(w )))/-dw:vi~Y(g 1(1)2)) e w)’ Y(gfl( )) - dw, thus

EU; (vi|#agents = k) = (u; — v;) - ®(g~ " (v;)) / V(g (w)) - dw (8)

N—k

This equatlon covers also the case that m, since then itisb(u) = Y (u) = 1,Vu > Q.
EU;(v;) = Zk 1Tk - EU; (v2|#agents = kz
EU;(vs) = (ui —v;) - ®(g7  (v;)) / Y (g Y (w)) - dw 9)

whered(z) = N 1 - MOk —1,4) - (F ( ))k_l_z-(l—FQ(a;))":
Z Zk i+1 Tk " C(k_l i ( )) - (1—FQ($))1

andY (z) = Zk VT iy Clk = 1,4) - (Fo(
e At Tk - C(k—lyl) (Fo(x))” (1—FQ( )’

Itis C(k — 1,i) = 0, if £ < 4 and this is the reason why we changed the lower bound of

—1—1

4Because from the point of view of a participating agent itsloet know whether the othe¥ — 1 agents
participate.
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the sum fork from 1 to4 + 1.
We will use the fact that’(k—1,4) - C(N—-1,k—1) =C(N—-1—i,N—k)-C(N —1,1).
Substituting from equations 6 and 7 and for arg/ [0, — 1] andz > Q itis:

St T Clk = 1,4) - (Fa(@)" ™+ (1 - Fo(@))' =
Yty C(k=1,0)-C(N=1,k=1)-(F(@)" " (1-F(Q)* " (FZ5a) (=)’
=Yl O(N =1=4,N —k)-C(N = 1,i) - (F(@)" " (F(z) - F(@)* "+ (1 - F(x))’
=C(N=1,40)-(1-F(@))" - 33, C(N =1=i,N k) - (F@)N " - (F(z) - F(@)" '~
=C(N - 1,4) - (1= F(z))' _

sy TCIN—1—i,N—i—=1=X)-(F@Q)N "' (F(z) - F(Q)*
=C(N —1L4) (1= F(z))" - (F(z)" '™ ,
Therefored(z) = 7' C(N — 1,4) - (F(x)) -(1-F(z))'
andY (z) = X" 2 O(N = 1,4) - (F()Y 7" (1= F(z))".
Note ifx < @, then®(z) = Y (z) = 0 and thusEU;(v;) = 0.
The bidv; that maximizesZU; (v;) can be found by setting

BV — 0 5 ~D(g~ (07)) + (us — v7) - TELED Y (g7 (w3) = 0.
Sincev; = g(u;), the previous equation becomes
—®(u;) + (ui — g(ui)) - 3((::)) + Y (u;) = 0.
The functiong(u) that satisfies this equation is the same as equation 5 (useddn18 with
T(u) = ®(u) — ¥(u)) given that the boundary conditiong$Q) = Q. B

Becauseb andY are®(z) = Y7 ' C(N —1,4) - (F(as))N_l_i (11— F(x))i and

Y(z) =" C(N —1,4) - (F(m))Nﬁl*i (11— F(:c))i we can simplify equation 5 to:

N—-1—1

gw) == (F(w) ¥ [ (@)
Q
Note that equation 9 can be written@#; (v;) = (u; —v;) -@(g*l(vi))Jrfé’fl(”i) Y (u)-
¢'(u) - du and the maximal expected utility(u;, Q) of agent: is therefore
U(ui, Q) = BU(vi)], _y0) ©

U, Q) = (i — g(us)) - Dus) + /Q U Y(W) g ) - d (10)

We will use this utility in the next theorems, and in the coetplanalysis of the fulR-
round case (whe® > 2), which is presented in [Vetsikas et al. 2007].

THEOREM 4.2. If the starting price is) = 0, a second round of bidding exists with
probability (1 — p) (p # 0, 1), the utility of the agents in the second round is drawn from
the same distributio’(u) and each agentin fact has utility in the second round ~ w;,
then the equilibrium strategy is the solution of the difféi@ equation
P’ (u;)

(ui —g(uq)) - Tla) (®(wi) = Y (us)) - O (ui, g(ui)) (11)
where
_ 1— P(Q)-Y(Q gl %dw u; Y (w) ' (w
U(w, Q) = 1+ 152 - LAy - ela TET O (D) + [ e - ),

and the boundary condition ig0) = 0.

PrROOF. The proof is presented in [Vetsikas et al. 2007].
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THEOREM 4.3. If the starting price isQ) = 0, a second round of bidding exists with
probability (1 — p) (p # 0, 1), the utility of the other agents in the second round is drawn
from distribution H (u), and each agent knows (more accurately for itself) that its own
utility u; is drawn from distributionG(u), then the equilibrium strategy is the solution of
the differential equation

(1 = gl) + L - Us(gu) - T = (Bu) = V(@) - Wlg(w)  (12)

where¥ (Q) is given by equation 15 and; (Q) by equation 13.
The boundary condition ig(0) = 0.

PrROOF Initially we must compute the expected gain of utility (zedty it's negative, so
it'saloss)Uy(Q), if the agentis a winner in the first round and in the secondtilisy w; <
Q. The agentis forced (by the rules) to keep a bid of at |@dstthe auction; so it puts a bid
v; = Q. Let us assume that exacttyof the other agents wish to buy the goodsk [ m
there is no problem, and the utility differencefisHowever ifk < m, there ardm — k)
units that must be sold randomly to some of the previous win&e can compute that the
probability of getting a room in this case is equal%ej{’ﬁ%gﬁ The probability that of
the other agents will have utilities; > Q is C(N —1,k) - (H(Q))N_l_k (1- H(Q))k
(see lemma 6.2) and, if selected, the utility difference;is- Q). Thus the expected utility
differencelUy, (u;, Q) is

N m—1 N-(m—k
Ur(u;, Q) = Z {mEN—k;

k=0

k

N—-1-k ~
C(N=1k)- (H(@)" T (1-H(@) " @ - Q)
if u; < Q.
If w; > @, then we can't have this case, since the agent would wishrtipate. Since
the value of the utilityz; is not known, but the distributio&'(w), from which it is drawn,
is the total utility difference (loss actually), becausefated bidding of the agents that
won the first round, i€/ (Q) = [ U (i, Q) - Probl; = w] - dw.
Note also tha];fOQ(ﬂi — Q) Problu; = w] - dw = fOQ G(w) - dw.
It is therefore

m—1 (m — 1 Q
Uu(@) =~ X { iy OOk (@) @) [ de )

(13)
The expected utility for the agent at the second round (withioe inclusion of the utility
difference stated in equation 13)i5Q) = gmu(w,Q) - Problu; = w] - dw. This

is because, ifi; < @, then the utility gained i9. If u; > @, then the utility gained is
U(w,Q), and it is computed by equations 5 and 10, in whiglr) andY (z) are replaced

by d(x) = X7  O(N — 1,4) - (H(x))" 7" (1 - H(x))" and

~ — . N—1—i i

Y(2) = L2 C(N = 1,4) - (H(z)" " (1= H(x))"

Both utilities U(Q) andUL(Q) depend on the pric€) at the start of the second round,

which in turn depends on the bids placed in the first round.
If B(™ > y; then@Q = B(™); in this case the agent does not win in the first round, so there

5This is bigger thar%k, because some of ttkeagents might have been winners on the first round as well.
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is no utility loss in the second round. B(™~1) > ¢; > B("™) then the agent submitted
the m*" price, soQ = v;, and ifv; > B(™~1 thenQ = B(™~1); in both these cases
there is an expected loss in the second round.
Note thatProb[B(™~1) < v] = Y (g~ (v)) andProb[B"™) < v] = ®(¢~'(v)) (see proof
of theorem 4.1), and tharob[Q = v;] = Prob[B(™1 > v; > B(™)] =
Prob[B™) < v;] — Prob|B™=1 <] = ®(g~ ' (v)) — Y (g~ ' (v)).
As a result we can now compute the expected utility, if a séconnd does exisUi@) as
follows:
U(z) o UW) - ProblQ = w] - dw =
fovi (U(w) + UL(w)) - Prob|Q = w] - dw + (U(vi) + UL(Ui)) - Prob|Q = v;]

+fui U(w) - ProblQ = w] - dw <
U = [ (Uw) + Urw)) - &Y -1< )) - dw }

(U ) +UL ) {@(g (0) =Y (g7 (03) }+ [ U(w) & (g~ (@) -dw

The expected utility if the auction closes at the first roﬂfrﬂf is given by equation 9 when
Q@ = Oisinserted, since the price g = 0 at the beginning of the first round.
The expected utility for both rounds i8U;(v;) = p - Ui(l) +(1-p)- Ui(z) &

EU(vl =p-{(w —v) (g )+ Y ) - dw} 14
)L (0) + Ul )) N ) -
+(U(Uz)+UL vi)) {@(g () =Y (g (W)} + [, Uw)- 75@(g7 1 (w)) - dw}

We find the equilibrium by settméﬁii) = 0 and then substituting; = g(u;). In the
end we get

(=g () + LU (g )

1 P T N T (0l - (B () — Y (s
7)) (1 » (U (g(ui))+UL(g(ui)))) (D (i) =Y (ui))

Letusset(Q) =1 — 1%7’ (U'(Q) + Ui (Q)), therefore

U@ =145 [1= () HAT@ ]S «MN (1 74{(:; T gy ) det
S MR OV = 1, k) - {(N-1k)-H'(Q)- (H(@) (1= H@)* - [ G
—k-H'(Q)- H ) R (1—H(Q))(’“*”-fOQG(w).dw
HH@)TT (1-H@)" - 0@} s
whered ( P JLC(N —=1,4)-(H(x))N~1.(1— H(z))" andY (z) = "> C(N — 1,4) -
(H(z))N~! (1—H( )% Then the differential equation becomes
P’ (us)

(1 = gl + =L - Us(a()) - T = (@) = ¥ (w) - ¥la(w)

g’ (ui)
The boundary condition ig(0) = 0. B

5. DISCUSSION AND CONCLUSIONS

To summarize, in this paper we concentrated on auctionhithvata set of possible closing
times, one of which is chosen randomly for the auction to énd’hese auctions can be
decomposed into one or more rounds, during which the auistimeated as sealed bid. We
analyzed the Bayes-Nash equilibria that exist in such casé€omputed several “novel”
equilibria for these auctions. We computed equilibria focteons that selll or several
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identical items, and we demonstrated the methodology usedrhpute the equilibria in
these cases.

In [Vetsikas et al. 2007], we use the same methodology thaappdied in sections 3
and 4, in order to derive the systems of differential equestiwhose solution constitutes a
Bayes-Nash equilibrium for the general case of an auctidh miltiple possible closing
times, and not just two, as was the case in the theorems that pvesented here. We
break the auction into more rounds, compute the utility fier last two rounds (e.g. solv-
ing equation 12 and then substituting in equation 14), aed tlecursively compute the
expected utilities for the previous rounds, using the l&iityfunction as the next round’s
utility function, until the first round is reached. In additiwe describe the algorithm used
in order to solve this system, and present equilibria botrafaniform distribution and a
distribution that approximates the values of hotel roomsnduthe TAC gamé. We use
this later equilibrium strategy in our TAC agent.

We are currently working towards extending the resultsqatssd here and in [Vetsikas
et al. 2007], in various ways. We examine the equilibria @n¢sn the case of multi-
demand auctions; this would allow us to remove the curresiriction that each agent
must bid for a single item. In addition, we are interestedhi@ thange that occurs in
the equilibrium strategies, when each agent wishes not tontgaximize its own profit,
but also to minimize the profit of its opponents, which is maalistic for a competition
setting, like TAC. We plan to incorporate these extensiar@ir analysis in order to further
improve our TAC agents.

6. APPENDIX
LEMMA 6.1. If random variablesX;,Vi € {1,..., N} are i.i.d. with probability dis-
tribution f(z) = Prob[X; < z] and Y( ) denotes the}c”‘ order statistic of the variables
X;, then
Prob[v, P < Z C(Ni) - (f)N " (1= ()

whereC' (N, i) is the total number of possible combinations @éms chosen fronv.
LEMMA 6.2. If random variablesX;,Vi € {1,..., N} are i.i.d. with probability dis-

tribution f(z) = Prob[X; < z], then the probabilit)pk that exactlyk of these variables
pe = C(Nk) - (F(T)NF- (1= f(T)*

PrRoOOF Both of these lemmas can be found in any probabilities beak {Rice 1995]).
LEMMA 6.3. A functiong(u) that satisfies the equation

(u— g(u)) - 24 = T(u) is the following

_ Q T(w)
90 =0T o Q@)

u T’ (w) =@ (w) .
whereQ(u) = e’p i) ¢ depends on the boundary conditions andan have
any value.
ProoF All that is needed to do is to replagéu) in the differential equation with the
formula provided and check that the two sides of the equatierindeed equal.

6This distribution is generated by collecting the utilit@fshe hotel rooms from a large number of actual games
and thus we can estimate the distributidn@:), G(u), H (u) that we use in the formulas for the equilibria.
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