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1. INTRODUCTION

The connection between machine learning and economics is, I feel, quite natural.
There is a growing body of work that lies at the intersection of the two fields, but
most of this work focuses on applying machine learning paradigms to economic
problems. Examples include prediction of consumer behavior [Kalai 2003; Beigman
and Vohra 2006], automated design of voting rules [Procaccia et al. 2007; Procaccia
et al. 2008], and reduction of mechanism design problems to standard algorithmic
questions [Balcan et al. 2005].

Nevertheless, there are preciously few papers investigating the incentives that,
in some settings, govern the learning process itself (see, e.g., Perote and Perote-
Peña [2004], Dalvi et al. [2004]); none of them do so in a general machine learning
framework. Where, indeed, do strategic considerations come into play in the learn-
ing world? In general, a machine learning algorithm receives a (small but hopefully
representative) training set consisting of points sampled from an input space and
labeled according to some target function; the algorithm outputs a hypothesis that
is presumably close to the target function. For simplicity, consider a basic setup
where n selfish agents control n disjoint subsets of the input space. The label of
each point in the training set is reported by the agent that controls it (whereas the
identities of the points controlled by an agent are common knowledge). Crucially,
each agent is interested only in the accuracy of the generated hypothesis on its own
part of the input space. An agent can influence the outcome of the learning process
by misreporting the labels of the points under its control.

The above strategic setup seems relevant, for instance, in the context of decisions
taken by a central bank, such as the European Central Bank (ECB). The governing
council of the central bank collects information from national bankers (the agents),
who in turn gather data on different economic parameters by means of their own
institutions. The central bank decides on an economic policy (hypothesis) by using,
say, regression learning on the examples provided by the national bankers. The
national bankers may thus be motivated to manipulate their portion of the data
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in a way that achieves a central policy that is more accurately aligned with the
interests of their nation.

Strategic behavior introduces an undesirable bias to the training set, and con-
taminates the entire learning process. The goal is therefore to design learning
algorithms—mechanisms, that is—that are strategyproof, while approximately max-
imizing social welfare. I believe that this agenda, more than ever before, calls for a
synthesis of the two fields, namely Machine Learning and Mechanism Design, and
that the results would truly be of interest to researchers from both communities.

2. SOME RESULTS

In recent work [Dekel et al. 2008; Meir et al. 2008] we pursued the above agenda
under a more general mathematical model than the one hinted at in the introduc-
tion. Each agent holds a probability distribution over the input space, reflecting the
importance it attributes to different issues. The agents also hold private functions,
defined on the input space, that reflect the ideal outcome from their point of view.

The risk of an agent—its disutility, or cost—is the inaccuracy of the hypothesis
returned by the mechanism with respect to the private function and distribution
of the agent.1 The definition of risk depends on the output space, among other
things, and hence it is defined differently in different settings.

As it turns out, when it comes to strategyproof mechanisms, this learning theo-
retic setting can be reduced to a much simpler one, in a way that the transformation
is valid with high confidence and accuracy given enough examples from the distri-
bution of each agent; we omit the details here. In the simple setting, each agent
controls a subset of the training set, and its empirical risk is defined only with re-
spect to its own subset. In the following I make this model slightly more concrete,
and sketch some results.

2.1 Regression Learning

In joint work with Dekel and Fischer [Dekel et al. 2008] we obtained some encour-
aging results with respect to strategyproof regression learning. In the regression
model, the output space is the real line R. The accuracy of a hypothesis is evalu-
ated according to a loss function ` : R × R → R+. Common choices of ` are the
squared loss, `(α, β) = (α − β)2, and the absolute loss, `(α, β) = |α − β|. Given a
hypothesis f ∈ F returned by the mechanism on a training set S =

⊎
i Si, where F

is the hypothesis class and Si is the subset of the training set controlled by agent
i, the empirical risk of agent i is

R̂(f, Si) =
1
|Si|

∑
(x,y)∈Si

`(f(x), y) .

We define the global empirical risk as

R̂(f, S) =
1
|S|

∑
(x,y)∈S

`(f(x), y) =
1
|S|

n∑
i=1

|Si| · R̂(f, Si) .

1“Risk”, rather than “cost”, is the prevalent term in the machine learning literature.
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(a) Truthful dataset.
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(b) Manipulated dataset.

Fig. 1. ERM can be manipulated in the general regression model even under the absolute loss

function. In this example, X = R (the x axis), and F is the class of constant functions over R.
Agent 1 controls the black examples, whereas agent 2 controls the white examples. Given the

truthful dataset (a), ERM would return the constant function 2, causing agent 1 to suffer a risk

of 2 (on its examples at x = 1 and x = 2). However, the agents may misreport the labels (y
values) of their examples. If agent 1 lied about the label of its example at 3 (see (b)), then ERM

would return the constant function 1, with agent 1 incurring a risk of only 1 (with respect to the

truthful label of its example at 3).

So, the empirical risk is in fact the weighted social welfare. Our mathematically
cleanest results are obtained in the very simple, but still nontrivial, setting where
each agent only controls one point, that is, |Si| = 1 for all agents i. In this setting,
it is possible to show that under the absolute loss function, Empirical Risk Mini-
mization (ERM)—that is, simply choosing a hypothesis that minimizes the global
empirical risk, or maximizes social welfare—is group strategyproof (i.e. no coalition
of agents can benefit from lying).

Theorem 2.1. [Dekel et al. 2008] Assume that |Si| = 1 for all i, and that F is
a convex hypothesis class.

(1 ) Under the absolute loss function, ERM is group strategyproof.

(2 ) Under any superlinear loss function (including the squared loss) and additional
very mild technical assumptions on F , ERM is not (even individually) strate-
gyproof.

Unfortunately, the positive part of Theorem 2.1 does not hold when agents control
multiple points; see Figure 1 for an illustration. It is important to note that even
in this more general setting, it is possible to make ERM truthful by augmenting
it with VCG payments. However, we are interested in obtaining strategyproofness
without assuming quasi-linear preferences.

A very intuitive mechanism performs ERM on the dataset of each agent sep-
arately, relabels the examples of agent i according to the hypothesis returned by
ERM on the dataset of i, and then performs ERM globally on the relabeled dataset.
We are able to show the following:

Theorem 2.2. [Dekel et al. 2008] Let F be the class of constant functions over
Rd, d ≥ 1, or the class of homogeneous linear functions over R, and assume ` is
the absolute loss. Then the above mechanism is group strategyproof and gives a
3-approximation of the global risk. Moreover, no strategyproof mechanism can yield
a better approximation ratio.
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Extending this result to more complex hypothesis classes currently seems out of
our reach.

2.2 Classification

In joint work with Meir and Rosenschein [Meir et al. 2008] we extended the inves-
tigation to the world of classification. In this model, the output space is simply
the set {+,−}. The common loss function used for classification is the 0-1 loss
function, which is 0 if the label of a point matches its image under a hypothe-
sis, and 1 otherwise. In other words, the empirical risk of an agent is simply the
number of examples under its control that the hypothesis mislabels. Crucially, in
this setting it is also possible to obtain a reduction from a general learning theo-
retic setting—where the private distribution of each agent is sampled—to a simple
setting involving only the strategyproof minimization of empirical risk.

On the face of it, obtaining strategyproofness in the classification model seems
simpler than in the regression model. For instance, it is quite obvious that an agent
that only controls one point does not have an incentive to lie. However, appearances
can be deceiving.

Our early results are concerned with a classification setting where F contains
only two hypotheses: the constant positive hypothesis (that labels all the points
positively), and the constant negative hypothesis. This (surprisingly nontrivial)
setting is motivated in its own right; for instance, consider the central bank example
given above, and suppose the bank simply has to make a positive or negative
decision about a given issue. We prove:

Theorem 2.3. [Meir et al. 2008] Let F be the class of constant hypotheses, and
let ` be the 0-1 loss. Then:

(1 ) There exists a (trivial) group strategyproof deterministic mechanism that yields
a 3-approximation of the global risk. Moreover, no strategyproof deterministic
mechanism can give a better approximation ratio.

(2 ) There exists a (nontrivial) group strategyproof randomized mechanism that
yields a 2-approximation of the global risk. Moreover, no strategyproof ran-
domized mechanism can give a better approximation ratio.

Once again, it seems difficult to obtain similar results under more complex hy-
pothesis classes. We are currently able to put forward a randomized mechanism
that, under the assumption that F is the class of linear functions over R, is strate-
gyproof and yields an approximation ratio of O(k2), where k is an upper bound on
the number of points controlled by any agent. In brief, the mechanism iteratively
chooses a random dictator, breaking ties according to the next randomly chosen
dictator. We can also demonstrate a lower bound of Ω(k) for deterministic mech-
anisms. We conjecture that the optimal truthful approximation ratio, under the
above assumption, is Θ(k).

3. CONCLUSIONS

I believe that the results discussed above are merely the tip of the iceberg, a first
step towards a theory of incentives in machine learning. First, we are very far
from fully understanding the models described above. Second, a host of other
ACM SIGecom Exchanges, Vol. 7, No. 2, June 2008.
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machine learning models are begging to be explored. Third, conceptually it is
not clear that strategyproofness in dominant strategies (while only approximately
minimizing risk) is the correct solution concept that one should look at, rather than,
say, ex-post Nash equilibrium, Bayes-Nash equilibrium, or regret minimization.

For more information, including a comprehensive presentation of our models and
results, the reader is referred to our published papers [Dekel et al. 2008; Meir et al.
2008].
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