Solution to Exchanges 7.3 Puzzle: Product Adoption in a Social Network

Aneesh Sharma and Sicco Verwer

Two correct solutions were submitted to the puzzle in SIGecom exchanges given at http://www.sigecom.org/exchanges/volume_7/3/PUZZLE.pdf. Both of these solutions are listed below. The first is by Aneesh Sharma, the second by Sicco Verwer.

Solution 1
Let B_i denote the expected number of B adoptors after i agents have made their adoption decisions. We are interested in computing B_n/n. First, we observe that $B_1 = p_0$ as the first agent can only adopt B if she is a B fanatic. Further, we observe that for any $i > 1$:

$$B_{i+1} = \left(p_0 + \frac{B_i}{n} p_1 \right) (B_i + 1) + \left(1 - p_0 - \frac{B_i}{n} p_1 \right) B_i$$

This is because the expected number of agents go up by 1 only if either agent $i+1$ is a B fanatic or if the agent that $i+1$ has chosen to admire has already chosen to adopt B (with probability B_i/n). In the remaining cases, the expected number of agents remain the same. Now, we can simplify the above equation to get:

$$B_{i+1} = p_0 + \left(1 + \frac{p_1}{n} \right) B_i$$

We can telescope this sum starting with B_1 to get:

$$B_{n+1} = p_0 \left(1 + \left(1 + \frac{p_1}{n} \right) + \ldots + \left(1 + \frac{p_1}{n} \right)^{n} \right)$$

Summing the series for $i = n - 1$ and using the approximation $(1 + z/n)^n \approx e^z$ for large n, we have the quantity of interest as:

$$\frac{B_n}{n} \approx \frac{p_0}{p_1} (e^{p_1} - 1)$$

Solution 2
Like the previous solution, we obtain:

$$B_{i+1} = p_0 + \left(1 + \frac{p_1}{n} \right) B_i$$

However, we write out this sum as:

$$B_n = p_0 \left(n + a_n \cdot \frac{p_1}{n} + b_n \left(\frac{p_1}{n} \right)^2 + c_n \left(\frac{p_1}{n} \right)^3 \ldots \right)$$

Authors’ addresses: aneesh.x.sharma@gmail.com, siccoverwer@gmail.com

Now we only need to find the values for a_n, b_n, c_n, \ldots. Here a_n stands for the number of times that $p_0 \cdot p_0 / n$ occurs in B_n. This is equal to the number of times that $p_0 \cdot p_0 / n$ occurs in B_{n-1} plus the number of times that p_0 occurs in B_{n-1}. Thus:

$$a_n = a_{n-1} + (n - 1)$$

Similarly for b_n, c_n, \ldots:

$$b_n = b_{n-1} + a_{n-1}$$
$$c_n = c_{n-1} + b_{n-1}$$

\[\ldots \]

Except the first few values, these recursions form the triangular, tetrahedral, pentatopic, etc. numbers. Solving these recursions results in the following sets of equations:

$$a_n = \frac{1}{2} n (n + 1)$$
$$b_n = \frac{1}{6} n (n + 1) (n + 2)$$
$$c_n = \frac{1}{24} n (n + 1) (n + 2) (n + 3)$$

\[\ldots \]

For n goes to ∞, these numbers can be used to rewrite the final result B_n / n as:

$$\frac{B_n}{n} \approx p_0 \left(1 + \frac{p_1}{2} + \frac{p_1^2}{6} + \frac{p_1^3}{24} \ldots \right)$$

The sequence $f(x) = 2, 6, 24, \ldots$ is equal to $f(x) = (x + 2)!$, thus:

$$\frac{B_n}{n} \approx p_0 \left(1 + \sum_{i=2}^{\infty} \frac{p_1^{i-1}}{i!} \right)$$

Using $e^x = \sum_{i=0}^{\infty} (x^n / n!)$, we obtain:

$$\frac{B_n}{n} \approx p_0 \left(1 + \frac{1}{p_1} \sum_{i=2}^{\infty} \frac{p_1^i}{i!} \right)$$
$$\frac{B_n}{n} \approx p_0 \left(1 + \frac{1}{p_1} \left(\sum_{i=0}^{\infty} \frac{p_1^i}{i!} - 1 - p_1 \right) \right)$$
$$\frac{B_n}{n} \approx p_0 \left(1 + \frac{1}{p_1} (e^{p_1} - 1 - p_1) \right)$$
$$\frac{B_n}{n} \approx \frac{p_0}{p_1} (e^{p_1} - 1)$$