Optimal Persuasion via Bi-Pooling

Itai Arieli (Technion),
Yakov Babichenko (Technion),
Rann Smorodinsky (Technion),
Takuro Yamashita (Toulouse School of Economics)

EC 2020
The Partially Informed Sender Setting

- States: $\Theta = \{0, 1\}$.
- Sender is partially informed about the state. Namely Sender’s belief about the state is distributed according to $F \in \Delta([0, 1])$.
- Sender’s policy: A mapping from beliefs to signals.
- Receiver receives the signal, updates his belief, and takes an action that affects Sender’s utility.
- **Bayesian persuasion:** Sender commits to a policy before she observes her signal.
Special Property:
Receiver’s action is a function of posterior’s mean.

Signalling policy \rightsquigarrow Distribution over posterior means.

Which distributions over posterior means are implementable?

[Gentzkow, Kamenica ’16], [Kolotilin ’18]
A distribution over posterior means $G \in \Delta([0, 1])$ is implementable by some signalling policy \iff
G is a mean preserving contraction of the prior $F \in \Delta([0, 1])$.
Main Theorem 1
Every persuasion problem admits an optimal solution that is a bi-pooling contraction.

Main Theorem 2
For every bi-pooling contraction there exists a persuasion problem (a utility) for which this contraction is the unique optimal solution.