We present the theoretical foundation for additive surge, Uber’s new driver surge mechanism.

Theoretically study driver incentives with dynamic pricing:
- Show multiplicative surge doesn’t work
- Develop a pricing scheme that does work

Empirically show that additive surge works in practical regimes of interest

Additive surge

Key effect: lock in surge payments with long trips

Multiplicative surge

Long trips increase in value with surge

Short trips do not

Both Long and Short equally increase in value!

"I thoroughly dislike short trips ESPECIALLY when I’m picking up in a waning surge zone"

-- Anonymous driver
Theoretical results

Ignoring demand dynamics, naïve old pricing model works well.

Theorem: In the static model, Proportional pricing $w(\tau) = m\tau$ is incentive compatible.

With demand dynamics, it doesn’t.

Theorem: Proportional pricing may not be incentive compatible
If payout during surge is proportional, $w_1(\tau) = m_1\tau$

then $\sigma_1 = (T_1, \infty)$, i.e., rejecting short trips, is optimal

With demand dynamics, additive surge approximately works.

Theorem: For $\frac{P_0}{P_1} \in [C, 1]$, we have IC prices of the form:

$$w_i(\tau) = m_i\tau + z_i \left[\frac{\lambda_{i\to j}}{\lambda_{i\to j} + \lambda_{j\to i}} \right] \left[1 - e^{-(\lambda_{i\to j} + \lambda_{j\to i})\tau} \right]$$
Theorem: For \(\frac{P_0}{P_1} \in [C, 1] \), we have IC prices of the form:

\[
w_i(\tau) = m_i \tau + z_i \left[\frac{\lambda_{i\rightarrow j}}{\lambda_{i\rightarrow j} + \lambda_{j\rightarrow i}} \right] \left[1 - e^{-(\lambda_{i\rightarrow j} + \lambda_{j\rightarrow i})\tau} \right]
\]

with \(m_0, m_1, z_1 \geq 0 \).

If surge is too valuable compared to non-surge on average, then cannot build fully IC prices.

We have \(m_i, z_i, C \) in closed form in terms of the model parameters.

Probability that a trip of length \(\tau \) that starts in state \(i \) ends in state \(j \)

Continuation value: compensate drivers for taking them out of surge.
Empirical goal: Estimate value of a request

How does accepting a given trip request change a driver’s expected earnings over the next 90 minutes?

- Receives + accepts trip τ
- Observe actual driver earnings 90 minutes later
- Does not accept request
 - Use nearby driver as counter-factual
- Find a nearby driver match by checking trips that were recently completed with a nearby destination