The Multiplayer Colonel Blotto Game

By Enric Boix-Adserà, Ben Edelman, and Siddhartha Jayanti

Budget \(_{Alice} = \) 5

Budget \(_{Blotto} = \) 7

Battlefields

- **Alice**: Utility: 5
 - Battlefields 1: Budget = 7, Value = +7
 - Battlefields 2: Budget = 2, Value = +2
 - Battlefields 3: Budget = 3, Value = +3
 - Battlefields 4: Budget = 2, Value = +2

- **Blotto**: Utility: 11
 - Battlefields 1: Budget = 7, Value = +7
Our Contribution: Multiplayer Blotto

Applications

Elections: k parties compete over n winner-take-all districts. Campaign resources need to be allocated.

R&D: k companies have the ability to use their fixed R&D budgets to research and develop n potential drugs.

Monopoly: k competing companies in the same industry want to become the dominant player in each of n new local markets.

Ads: k companies compete to advertise a substitute good to n consumers.

Ecology: k species in a habitat compete to fill n distinct ecological niches.
Main Results

Algorithm 1: for 3-player symmetric Blotto, we give an $O(n)$ time algorithm for sampling a strategy in Nash Equilibrium. (assuming no item is worth more than $\frac{1}{3}$ of the whole value.)

Algorithm 2: for k-player symmetric Blotto, if the battlefields can be partitioned into k equal-value parts, we give an $O(n)$ time algorithm for sampling a strategy in Nash Equilibrium.

Algorithm 3: we give an Fully Polynomial Time Approximation Scheme for sampling equilibria of Boolean Blotto games for any number of players.
Our Techniques

1) **Derive marginal bid distributions:**

 Requirement: budget constraint holds in expectation

2) **Couple marginal bid distributions:** Requirement: budget constraint holds almost surely

 3-player (**Alg 1**): rotate the uniform distribution on the 2-sphere in \mathbb{R}^3 into hyperspace; water-filling algorithm to construct the rotation

 k-player (Alg 2**): use properties of Dirichlet distribution

 Boolean (Alg 3**): greedy algorithm