Online Policies for Efficient Volunteer Crowdsourcing

How can we use nudging mechanisms to engage volunteers efficiently while avoiding excessive notifications?

Motivated by a collaboration with FOOD RESCUE US (FRUS)

Our Contributions:

• Introduce the online volunteer notification problem
• Develop online policies with constant factor guarantees
• Provide hardness results
• Test policies on datasets from FRUS

Authors: Vahideh Manshadi and Scott Rodilitz (Yale School of Management)
Online Volunteer Notification Problem

- **V**: set of volunteers and **S**: set of task types
- **Task arrival**: At time t task *s* becomes available w. p. $\lambda_{s,t}$ ($\sum_{s \in S} \lambda_{s,t} \leq 1$)
- **Volunteer state** (active/inactive): Initially active.
- **Match prob.**: If active & notified about *s*, volunteer *v* responds w. p. $p_{v,s}$
 - If an active volunteer is notified, she becomes inactive for τ periods
- **Inter-activity time distribution**: $g(\tau)$

Challenging Objective: maximize expected # of completed tasks over *T* periods (submodular in notified subset)

Goal: design online notification policies that perform well compared to a “clairvoyant benchmark”

Example:
We can notify each volunteer every **two days** $\rightarrow g(2) = 1$
Summary of Theoretical Results

- Parameterized based on minimum discrete hazard rate of inter-activity time distribution:
 \[
 q = \min_{\tau} \frac{g(\tau)}{1 - G(\tau - 1)}
 \]

Theorem [Lower Bound]: There exists a non-adaptive randomized online policy that achieves at least \((1 - \frac{1}{e}) \frac{1}{2-q}\) of our benchmark.

Theorem [Upper Bound]: If \(q = 1/n\) for some integer \(n\), no online policy can achieve better than \(\min \left\{ \frac{1}{2-q}, 1 + q + \frac{q(1-q)(1-e^{-1})}{(1+q)\log(1-q)} \right\}\) of our benchmark.
Sparse Notification Policy (SNP)

Key Idea: Sparsify an ex-ante solution x^* by solving a sequence of “low-dimensional” DPs

Offline Phase: Artificially rank volunteers. Starting with $v = 1$ and $t = T$,

$$y_{v,s,t} = \begin{cases} x^*_{v,s,t} & \text{Reward of notifying } v \text{ about } s \text{ at } t \\ 0 & \text{Reward of not notifying } v \text{ at } t \end{cases} \quad \begin{aligned} J_{v,t+1} \end{aligned}$$

$$p_{v,s} \prod_{1 \leq u \leq v-1} (1 - p_{u,s} y_{u,s,t}) + \sum_{t+1 \leq \tau \leq T} g(\tau - t) J_{v,\tau}$$

- Solution of higher ranked DP’s
- Expected future number of rescues completed by v (if active at τ)

$$J_{v,t} = \sum_{s \in S} y_{v,s,t} \text{ (Reward of notifying } v \text{ about } s \text{ at } t)$$

$$\quad + (1 - y_{v,s,t}) \text{ (Reward of not notifying } v \text{ at } t)$$

Online Phase: If task s arrives at time t, notify volunteer v with prob. $y_{v,d,t}$

SNP vs. FRUS Current Practice

<table>
<thead>
<tr>
<th>Fraction of benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNP</td>
</tr>
<tr>
<td>Notify-1</td>
</tr>
<tr>
<td>Notify-3</td>
</tr>
</tbody>
</table>

Graph showing comparison of SNP and FRUS current practice.