An Improved Approximation Algorithm For MMS Allocation

Input
- Agents: \(N = \{1, 2, \ldots, n\} \)
- Indivisible items: \(M = \{1, 2, \ldots, m\} \)
- Additive valuation functions
 \[v_i(S) = \sum_{j \in S} v_{ij} \quad \text{for all } i \in N, S \subseteq M \]

Output
- A 3/4-Maximin Share (MMS) allocation \(A_1, A_2, \ldots, A_n \) where
 \[v_i(A_i) \geq \frac{3}{4} MMS_i \] (aka maximin value)
MMS value / partition / allocation

<table>
<thead>
<tr>
<th>Agents\items</th>
<th>🍎</th>
<th>🍌</th>
<th>🍏</th>
<th>🍍</th>
<th>🥥</th>
</tr>
</thead>
<tbody>
<tr>
<td>🤗 3 1 2 5 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>👨 4 4 5 3 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finding MMS value is hard!

<table>
<thead>
<tr>
<th>value</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMS value</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>value</th>
<th>9</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMS value</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

MMS allocation: \(v_i(A_i) \geq MMS_i \)

MMS allocation might not exist, but 3/4-MMS allocation always exist.
Algorithm Big Picture

To show the existence of $3/4$-MMS allocation:

We assume MMS_i is known for all i

$$\implies \text{Scale valuations such that } \text{MMS}_i = 1 \text{ for all } i \Rightarrow v_i(M) \geq n$$

- Step 1: Valid Reductions
 - Exist $S \subseteq M$ and $i^* \in N$ such that $v_{i^*}(S) \geq (3/4)\text{MMS}_{i^*}^n(M)$
 - $\text{MMS}_{i^*}^{n-1}(M \setminus S) \geq \text{MMS}_{i^*}^n(M)$ for all $i \neq i^*$

- Step 2: Generalized Bag Filling
Results

Existence of \(\frac{3}{4} \)-MMS allocation

Strongly Polynomial-time Algorithm for \(\frac{3}{4} \)-MMS allocation

More careful analysis

Existence of \(\left(\frac{3}{4} + \frac{1}{(12n)} \right) \)-MMS allocation

PTAS for \(\left(\frac{3}{4} + \frac{1}{(12n)} \right) \)-MMS allocation

MMS values are known

MMS values are known