Our Results

- \triangleright Value of the buyer for the item is drawn from some distribution F.
- ightharpoonup Data-poor regime : Seller has only two samples from F.

Theorem 1.

A rounded version of ERM from two samples attains revenue $\sim 0.56 \cdot \text{Opt}$ when F is regular.

Theorem 2.

There exists a regular distribution F under which ERM from two samples cannot do better than $0.642 \cdot \text{OPT}$.

Abstract Optimization Program Formulation

$$\alpha_{\rho}^{\star} = \min_{F, \text{OPT}, p^{\star}} \frac{1}{\text{OPT}}$$
 (revenue of ERM_{\rho} for distribution *F*)

s.t. (*F* satisfies the regularity constraints)

(the revenue for any price is at most Opt)

(the revenue for price p^* is exactly Opt)

Semidefinite Programming Relaxation

- ▶ Instead of the vector of variables f_i define the 3-d tensor of variables $f_{i,j,k}$.
- ▶ Replace $f_i \cdot f_j \cdot f_k$ with $f_{i,j,k}$.
- ▶ Replace $f_i \cdot f_j$ with $f_{i,j} = \sum_k f_{i,j,k}$.
- ▶ Replace f_i with $\sum_k \sum_j f_{i,j,k}$.
- ▶ Let $F_i = (f_{i,j,k})_{j,k}$, add the constraint $F_i \succeq 0$.

Implementation Details

We implemented $\overline{\alpha}_{\rho,n}(i^*)$ for all $i^* \in [n/2,n]$ in python using cvxpy that calls the solver SCS [O'Donoghue Chu Parikh Boyd '16].

The solver SCS produces not only a solution to the primal but also a solution to the dual problem. Hence, the values of the dual variables provide **a proof** for a lower bound for the value of $\overline{\alpha}_{\rho,n}(i^*)!$