What we think is missing in the fairness literature

- Clean, random (experimental) variation in *programming practices*.
- Paired with clear **outcome measures** of success/failure.
- So that the research community can *causally* link programming practices with the presence (or absence) of bias in code.
- ... and link these results back to theory.
This Paper: Field Experiment in AI Development

- \(\approx 400 \) programmers
- Same task:
 - Predict performance on a standardized math test
 - For 20K randomly selected people (using administrative data).
 - Using over 5000 covariates/person.
- Under four randomized experimental conditions.
Preview of Results (I): Interventions

- **Positive Result**: Non-technical reminders
 - Very effective.
 - About 60% of benchmark #1 (completely unbiased data).

- **Null Result**: Incentives
 - Affected effort (programming hours)
 - ... but *not outcomes*.

- **Negative Result**: Technical advice reversed the benefit of the reminder.
 - i.e., it made algorithmic bias worse.
Preview of Results (II): Programmer Characteristics

- Broadly uncorrelated with bias in code.
 - True for demographics.
 - As well as for implicit association test (IAT).
- However, **prediction errors** are correlated within demographics.
- This implies bias reduction through cross-demographic averaging.