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Two fundamental problems in economics are voting and assignment. In both settings, random
serial dictatorship is a well-established mechanism that satisfies anonymity, ex post efficiency, and

strategyproofness. We present an overview of recent results on the computational complexity of

problems related to random serial dictatorship.
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1. INTRODUCTION

Two fundamental problems in economics are voting and assignment. In the voting
setting, agents express preferences over alternatives and a social decision scheme
returns a probability distribution over the alternatives based on the agents’ prefer-
ences [Gibbard, 1977]. In the assignment setting, agents express preferences over
objects, usually called houses because only one object is assigned to each agent, and
a random assignment rule returns a random assignment of the houses specifying
the probability with which each house is allocated to each agent [Bogomolnaia and
Moulin, 2001, Budish et al., 2013]. In both settings, randomization is crucial to
achieve minimal fairness requirements such as anonymity and neutrality.

The mechanism known as random serial dictatorship (RSD) gives rise to both a
desirable social decision scheme [Gibbard, 1977, Aziz et al., 2013b] and a desirable
random assignment rule [Bogomolnaia and Moulin, 2001, Crès and Moulin, 2001].
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In the voting setting, RSD selects a permutation of the agents uniformly at random
and then chooses an alternative by sequentially allowing agents in the permutation
to refine the set of feasible alternatives to their most preferred of the remaining
alternatives. In the assignment setting, RSD selects a permutation of the agents
uniformly at random and then lets one agent after another pick his most preferred of
the remaining objects. In both settings, RSD is well-known to satisfy anonymity,
strategyproofness, and ex post efficiency (i.e., it randomizes over Pareto optimal
alternatives/allocations). In fact, it has been conjectured to be the only rule that
satisfies these properties [see e.g., Lee and Sethuraman, 2011].1

This paper surveys recent computational results regarding the probability of
choosing an alternative in the context of voting and the probability of an agent
getting a house. There are various reasons why computing the actual probabilities
(rather than simply executing the mechanism) is important. In the assignment
setting, the resulting probabilities of RSD can be viewed as fractional resource
allocations such as in scheduling or other applications [see e.g., Svensson, 1994,
Abdulkadiroğlu and Sönmez, 1998, Crès and Moulin, 2001]. Similarly, in voting,
the probabilities returned by RSD can be interpreted as fractions of time or other
resources allotted to the alternatives. Saban and Sethuraman [2013] mentioned
identifying the conditions under which the RSD probabilities can be computed in
polynomial time as an open problem. In another paper, Mennle and Seuken [2013]
propose random hybrid assignment mechanisms that hinge on the RSD probabil-
ities. Finally, the RSD probabilities have also been used in the design of a recent
algorithm for cake cutting [Aziz and Ye, 2014].

2. PRELIMINARIES

A voting problem consists of a set N = {1, . . . , n} of agents having preferences over
a finite set A of alternatives where |A| = m. The preferences of agents over the
alternatives are given by a preference profile %= (%1, . . . ,%n) where, for each agent
i ∈ N , %i is a complete and transitive preference relation over A where �i denotes
the strict part of the relation and ∼i denoteds the indifference part. A preference
relation %i is linear if a �i b or b �i a for all distinct alternatives a, b ∈ A.
For convenience, we will represent preference relations as comma-separated lists in
which sets denote indifference classes.

The serial dictatorship rule is defined with respect to a permutation π over N . It
starts with the set of all alternatives and then each agent in π successively refines
the set of alternatives to the set of most preferred alternatives from the remaining
set. RSD returns the serial dictatorship outcome with respect to a permutation that
is chosen uniformly at random. If the outcome is not unique, we take the uniform
probability distribution over the set of selected alternatives to enforce neutrality.

Example 1 (Illustration of RSD in voting). Consider the following pref-
erence profile.

%1 : {a, b, c}, d %2 : {b, d}, a, c %3 : c, {a, b, d}

1When preferences are linear, Gibbard [1977] has shown that random dictatorship is the only
strategyproof and ex post efficient social decision scheme.
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For permutation 123, the serial dictatorship outcome is {b}. The RSD lottery is
[a : 0, b : 1/2, c : 1/2, d : 0].

An assignment problem is a triple (N,H,%), where N is a set of n agents, H is a
set of m houses, and %= (%1, . . . ,%n) is a preference profile that contains, for each
agent i, a linear preference relation on the set of houses. Every random assignment
specifies, for every agent i and every house h, the probability pih that house h is
assigned to agent i. By the Birkhoff-von Neumann theorem, any such assignment
can be obtained by a probability distribution over deterministic assignments. RSD
chooses a permutation uniformly at random and then lets the agents sequentially
take their most preferred object that has not yet been allocated according to the
order of the permutation. It is easily observed that the assignment problem is a
special case of the voting problem where the set of alternatives A is the set of
all discrete assignments and the preferences of agents over A are induced by their
preferences over H. Although agents have linear preferences over the houses, they
are indifferent among different assignments in which they are allocated the same
house.

Example 2 (Illustration of RSD in assignment). Consider the following
preference profile.

%1 : a, b, c %2 : a, b, c %3 : b, a, c

Agents 1 and 2 are of the same type since they have identical preferences. For
each permutation, one can compute the serial dictatorship outcome. For example,
the permutation 123 yields the assignment {{1, a}, {2, b}, {3, c}}. The RSD random
assignment is given by the following table.

a b c

1 1/2 1/6 1/3

2 1/2 1/6 1/3

3 0 2/3 1/3

Although the assignment problem is a special case of the voting problem, this
does not imply that positive algorithmic results for voting also hold within the
assignment domain. The reason is that the translation of an assignment problem
to a corresponding voting problem leads to an exponential blowup in the number
of alternatives.

3. RESULTS

Recently, Aziz et al. [2013a] have shown that computing the RSD probabilities is
#P-complete both in the voting and in the assignment setting. Independently, Sa-
ban and Sethuraman [2013] have shown the same result for the assignment setting.

Theorem 1. (Aziz et al. [2013a]) In the voting setting, computing the RSD
probabilities is #P-complete.

Theorem 2. (Aziz et al. [2013a], Saban and Sethuraman [2013]) In the assign-
ment setting, computing the RSD probabilities is #P-complete.
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As a corollary, checking whether a given RSD probability is greater than or equal
to some fixed q ∈ (0, 1) is NP-hard. The reason is that since an RSD probability
takes at most n! + 1 values, a polynomial-time algorithm for the problem can be
used along with binary search to compute the exact probability in polynomial time.
In the assignment setting, even checking whether an agent obtains a house with
positive probability is intractable.

Theorem 3. (Saban and Sethuraman [2013]) In the assignment setting, check-
ing whether an agent gets a house with positive RSD probability is NP-complete.

A corollary of Theorem 3 is that the problem of computing RSD probabilities does
not admit an FPRAS (fully polynomial-time randomized approximation scheme)
unless the complexity class NP is equal to the complexity class RP [Saban and
Sethuraman, 2013].

In contrast to the result in the assignment setting, Aziz et al. [2013a] showed
that in the voting setting, the support of the RSD lottery can be computed in
polynomial time. The algorithm greedily builds up a permutation, if possible, in
which an agent is added to the partial permutation as long as the agent still keeps
the target alternative in contention for being selected.

Theorem 4. (Aziz et al. [2013a]) In the voting setting, there is a polynomial-
time algorithm to check whether an alternative receives positive RSD probability.

The negative complexity results by Saban and Sethuraman [2013] and Aziz et al.
[2013a] prompted the need to identify conditions under which RSD probabilities
can be computed efficiently. A problem with parameter k belongs to the class
FPT, and is said to be fixed-parameter tractable, if there exists an algorithm that
solves every instance I of the problem in time f(k) · poly(|I|), where f is some
computable function independent of I and poly is a polynomial. Aziz and Mestre
[2014] examined the parameterized complexity of the problems with respect to the
following parameters: the number of agent types, the number of alternatives, the
number of alternative types, and the number of houses. Agents have the same type
if they have identical preferences. Alternatives have the same type if each agent is
indifferent among all of them.

Theorem 5. (Aziz and Mestre [2014]) In the voting setting,

(1 ) There is an FPT algorithm for computing the RSD probabilities with parameter
T = # of agent types.

(2 ) There is an FPT algorithm for computing the RSD probabilities with parameter
q = # of alternative types.

Theorem 6. (Aziz and Mestre [2014]) In the assignment setting,

(1 ) There is an FPT algorithm for computing the RSD probabilities with parameter
m = # of houses.

(2 ) There is a polynomial-time algorithm for computing the RSD probabilities if
the number T of agent types is bounded.
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4. OPEN PROBLEMS

The recent work on computational aspects of random serial dictatorship gives rise
to some interesting problems. In the assignment setting, Saban and Sethuraman
[2013] proved that computing RSD probabilities does not admit an FPRAS unless
NP=RP. For voting, it remains open whether there exists an FPRAS.

In the assignment setting, Aziz and Mestre [2014] proved that there is a
polynomial-time algorithm if the number of agent types is bounded. It remains
open whether there exist an FPT algorithm for computing the RSD probabilities
for parameter # of agent types.

Finally, identifying fast exponential-time algorithms for computing the RSD
probabilities in both the assignment and the voting setting is another direction
for future work.
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