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We introduce a combinatorial variant of the cost sharing problem: several services can be provided
to each player and each player values every combination of services differently. A publicly known
cost function specifies the cost of providing every possible combination of services. A combinatorial
cost sharing mechanism is a protocol that decides which services each player gets and at what
price. We look for dominant strategy mechanisms that are (economically) efficient and cover the
cost, ideally without overcharging (i.e., budget balanced). Note that unlike the standard cost
sharing setting, combinatorial cost sharing is a multi-parameter domain. This makes designing
dominant strategy mechanisms with good guarantees a challenging task.

We present the Potential Mechanism — a combination of the VCG mechanism and a well-known
tool from the theory of cooperative games: Hart and Mas-Colell’s potential function. The poten-
tial mechanism is a dominant strategy mechanism that always covers the incurred cost. When
the cost function is subadditive the same mechanism is also approximately efficient. Our main
technical contribution shows that when the cost function is submodular the potential mechanism
is approximately budget balanced in three settings: supermodular valuations, symmetric cost
function and general symmetric valuations, and two players with general valuations.

1. INTRODUCTION

In their classic paper Littlechild and Owen [Littlechild and Owen 1973] consider
the problem of fairly dividing runways maintenance costs among airlines. In this
problem, each aircraft has a certain size and the cost of maintaining the runway
depends on the size of the largest aircraft that uses the runway. Littlechild and
Owen propose the following cost allocation scheme: first divide the cost of serving
only the smallest airplane among all airlines. Then, divide the incremental cost
for the second smallest airplane equally among all the airlines but the airline with
the smallest aircraft. Continue thus until finally the incremental cost of the largest
aircraft is divided among the airlines that use such aircraft.

Littlechild and Owen’s work is an arch-typical example of a cost sharing problem,
where the cost of a resource has to be divided among the participants. Cost sharing
was extensively studied in game theory, and in fact, Littlechild and Owen show that
their method coincides with the Shapley value [Shapley 1953].

In our work, we are interested in dominant-strategy mechanism for sharing the
cost. The influential paper of Moulin and Shenker [Moulin and Shenker 2001]
have shown how to use the Shapley values in order to achieve a truthful cost-
sharing mechanism: serve the largest set of players such that every player in this
set is willing to pay his Shapley value. They prove that for every submodular cost
function it holds that the Shapley value mechanism is groupstrategyproof — no set
of players can misreport in order to pay less. Furthermore, the cost of the service
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is always covered.

The problem of cost sharing was extensively studied in both economics and algo-
rithmic game theory and many variants were suggested and analyzed (e.g., [Moulin
1999; Moulin and Shenker 2001; Roughgarden and Sundararajan 2009; Bleischwitz
et al. 2007; Bleischwitz and Schoppmann 2008; Deb and Razzolini 1999; Mehta
et al. 2007; Hashimoto and Saitoh 2015]). Almost all the above variants considered
the case of a single good, perhaps with different possible levels of services. One is
naturally led to consider the following generalization of [Littlechild and Owen 1973]:
what if there are several runways that can be potentially be constructed, or maybe
we consider simultaneously building several distant airports? The preferences of
an airline become much more complicated now, for example, a long runway in New
York is less attractive if all London runways are much smaller.

In our paper we attempt to fill this lacuna and introduce combinatorial cost shar-
ing, where multiple goods can be provisioned and both costs and preferences depend
on the selected combination of goods. While combinatorial cost sharing is a natural
generalization of the basic cost sharing scenario, from a technical perspective it is
radically different as we leave the relatively safe single parameter world and cross
the bridge to the realm of multi parameter mechanism design. Nevertheless, we
will see that good mechanisms for combinatorial cost sharing do exist.

2. THE MODEL

The standard cost sharing setting (from now on, “simple cost sharing”) involves a
set N of players (|JN| = n), where the value of player i is v; if player i receives a
usage permission and 0 otherwise. A known cost function C : 2V — RT specifies
the cost of serving each subset of the players. The goal is to decide which players
to serve and for what prices.

In combinatorial cost sharing we have n players as before, but now there are
several public goods that can be constructed. We present two formulations of
combinatorial cost sharing. The first is more direct formulation which might help
the reader to digest the setting more easily. The second formulation — which is the
one that is studied throughout the paper — is equivalent in power but is notationally
more involved. We use it since it makes the technical proofs more readable.

A First Attempt. As in simple cost sharing, there is a set N which consists of
n players, but now there is a set M of public goods (for example, a pool, a gym,
etc.). Players might have complicated preferences over the goods in M (e.g., a
combined membership for the pool and the gym might be more valuable than the
sum of the values of each membership alone), thus the priveate valuation of player
iis v; : 2M — R. Note that this assumes that there are no externalities in the
sense that value of each player is determined only by the goods he is served (in
particular, the value does not depend on the other players who use these services).

Let C': (2V)™ — R be a known function that specifies the cost of every possible
combination of services. For example, C(S1,...,Sy,) is the cost of serving the first
good in M to the players in S7 while serving the second good in M to the players
in Sy, and so on. We stress that we do not make any assumptions on Si,...,S,
and in particular these sets are typically not disjoint.
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The Main Formulation. The issue with the first formulation is that we often
would like to assume that the cost function belongs to some standard class, e.g., C’
is submodular or subadditive. However, as defined C’ is not even a set function (its
domain is (2V)™). We thus use a different formulation that is equivalent in power.
Define — for notational convenience — for each player i a set M; with M; N M; = ()
for i # i’, where each j € M; represents a permission to consume a different good.
For example, if M is the set of public goods that can be constructed, we define
for each player i a set M;, |M;| = |M|, and think about the j’th item in M; as
permission for player i to use the j’th public good in M. In particular player i is
never interested in items from M/, for ¢ # i’. The private valuation of player i is
v; 1 2Mi — R. The cost function C : 2M1 x ... x 2M» — R specifies the cost of every
possible combination of services. Note that it is straightforward to express every
cost function in the first formulation as a cost function in the main formulation. In
particular, C' is now a set function (the set of items is M U --- U M,, — recall that
M; N M, for i # j), so standard notions such as subadditivity and submodularity
are defined in the usual sense.

3. COMBINATORIAL COST-SHARING MECHANISMS

A (direct) mechanism for combinatorial cost sharing problem receives as input

the valuations of the players and outputs an allocation of services ALG where
ALG; C M, is the set of services provided to player . Moreover for every player i the
mechanism specifies his payment p;. It is standard to assume that the mechanism
is individually rational (for every i, p; < v;(ALG};)), p; > 0 (no positive transfers)
and moreover p; = 0 if player 7 is not served.

Work on cost sharing in the AGT community mostly focuses on incentive com-
patible mechanisms, either dominant strategy or groupstrategyproof, that at the
very least always cover the cost. That is, in an instance where the mechanism
outputs an allocation m we require to have C(m) < ¥;p;. Ideally, we will
also not overcharge the players, at least not by much: a mechanism is S-budget
balanced if in every instance C(m) <Epi<pB- C(m)

We look for mechanisms that are economically efficient. Following [Roughgarden
and Sundararajan 2009], we look for mechanisms that minimize the social cost,
W(?) = C’(?) + Bien[vi(M;) — v;(S;)], which is the construction cost plus the
“lost value” from not providing all the services. Minimizing the social cost has some
appealing properties, for example, the social cost and the social welfare induce the
same order on allocations. Moreover, additive approximations to the social welfare
imply multiplicative guarantees on the social cost. We refer the interested reader
to the paper for a complete discussion.

The simple cost sharing literature is rich in beautiful results, but the jewel in the
crown is probably the Shapley value mechanism [Moulin and Shenker 2001], which
is a groupstrategyproof mechanism that exactly shares the cost whenever C' is a
submodular function [Moulin and Shenker 2001]. Roughgarden and Sundararajan
[Roughgarden and Sundararajan 2009] show that it gives an approximation ratio
of H, = 2?21% to the social cost. It is known that the approximation ratio of any
mechanism that always covers the cost is Q(logn) and that this is true for every
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dominant-strategy mechanism. [Dobzinski et al. 2008]*.

4. COST RECOVERING MECHANISMS AND THE POTENTIAL MECHANISM

The simple cost sharing domain is a single parameter one, where the private infor-
mation of every player consists of one number. Thus, to design a dominant strategy
mechanism one can focus on the quite powerful family of monotone algorithms. In
fact, the literature contains powerful techniques for designing groupstrategyproof
mechanisms, for various notions of groupstrategyproofness (e.g., the Moulin family
of mechanisms [Moulin 1999] and acyclic mechanisms [Mehta et al. 2007]).

In contrast, the combinatorial cost sharing domain is a multi-parameter one.
The difficulty of designing useful mechanisms for multi-parameter domains is well
known. The root of evil is the lack of general design techniques except the VCG
family. For example, if the domain is unrestricted, then the only possible dominant
strategy mechanisms are affine maximizers [Roberts 1979], a slight variation of VCG
mechanisms. In general, more restricted domains as ours do allow for non VCG
mechanisms, but the VCG family remains the main tool at our disposal.

However, while VCG is effective for welfare maximization, in cost sharing settings
we also need to cover the construction cost. Unfortunately, conventional wisdom
has it that the revenue of the VCG mechanism is uncontrollable and tends to be
low? [Ausubel and Milgrom 2006]. The main technical contribution of this paper
challenges this — we do manage to “tame” the VCG beast and obtain VCG based
mechanisms that are approximately budget balanced.

For simplicity, we start by constructing VCG based mechanisms that always cover
the cost for simple cost sharing, so the valuation of each player i can be described
by a single number: v; if served and 0 otherwise. In general, affine maximizers can
have both (multiplicative) player weights and (additive) allocations weights. The
former does not seem to be very useful, so we focus on affine maximizers of the
form:

argglgaif(z:vi — H(S) (1)
i€S
where H : 2V — R is a function that does not depend on the v;’s. If S is the
allocation that maximizes (1) for the valuation profile v, then the payment of player
1 is:

pi= Y v —HS)—| Y wv—H(S) (2)

jES_; jes—{i}
where S_; is the allocation that maximizes (1) when the valuation of player i is
identically 0.

IThis impossibility of [Dobzinski et al. 2008] is stated for budget balanced mechanisms, but the
proof applies even to cost recovering mechanisms.

2Some papers attempt to control the revenue of VCG in simpler auction settings by rebating
the players, e.g., [Moulin 2009; Guo and Conitzer 2009; Cavallo 2006]. Also relevant is the work
of Blumrosen and Dobzinski [Blumrosen and Dobzinski 2014] which is the closest in spirit to
ours (and in fact is the inspiration to our work). One of their results essentially provide a cost-
recovering VCG based mechanism for the excludable public good problem. Their mechanism can
be derived as a special case of our constructions.
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When H is the cost function C, we get a welfare maximizing mechanism. How-
ever, it is common for this mechanism to run a deficit, e.g., in the special case of
excludable public good (C(S) = 1 for every S # 0), if v; > 1 for every player i, the
revenue is 0.

Thus, to cover the incurred cost we need some other function H # C'. Notice from
the definition of S_; that -, g, v; —H(S-i) = 3 cq_ (i vj — H(S —{i}). Hence,
the payment of the ¢’th player p; is at least H(S)—H (S—{i}). A function H with the
property that for every set S C N it holds that ), ¢ H(S) — H(S — {i}) > C(S)
will lead to a dominant-strategy mechanism for simple cost sharing that always
collects payments that cover the incurred cost. For example, in the special case of
excludable public good, we can choose H(S) = H,g|, so if a set S is selected the
marginal cost to H of each player i € S is at least H(S) — H(S — {i}) = ﬁ and
the total payment is at least 1 (this special case was analyzed by Blumrosen and
Dobzinski [Blumrosen and Dobzinski 2014]).

Interestingly, for every cost function C' the potential function of Hart and Mas-
Colell [Hart and Mas-Colell 1989] satisfies this property. Hart and Mas-Colell sug-
gested the potential function as an alternative simple way of defining the Shapley
values. Fix some cost function C, and consider some function Po that assigns a
value to every coalition S C N and the cost function C. Suppose that Pg is such
that for every S C N the marginal contributions of the players add up to the
cost of the coalition: 3;es(Po(S) — Po(S — {i})) = C(S). Hart and Mas-Collel
show that Pc exists and is unique. They term Pc the potential function. This
also gives an alternative definition for the Shapley values as it turns out that the
Shapley value of player i in a coalition S is exactly its marginal contribution to Pg
(Shapley;(S) = Po(S) — Po(S — {i})).

We generalize and adapt the potential function to our needs: the potential func-
tion as defined in [Hart and Mas-Colell 1989] considers cooperative games, i.e.,
the cost function defined on subsets of N. Our generalization considers alloca-
tions. Specifically, we define the marginal contribution of player i to the allocation
(Sl, ceey Sn) by Pc(Sl, ceey Si—h Si, Si+1, ceey Sn) - Pc(Sl, ceey Si—17 @, Si+17 ceey Sn)

We set the function H, which appears in (1) and (2), to be our generalization
of the potential function, and name the new mechanism, a VCG mechanism using
the potential function, the Potential Mechanism. Notice that this gives a dominant
strategy cost-recovering mechanism for every cost function C. We are also able
to prove efficiency guarantees if the cost function C' is subadditive. Combined
together, we get the following general result:

Theorem: Let C' be a subadditive cost function. Then, the Potential mechanism
always recovers the cost and provides an approximation ratio of 27, to the social
cost. If C' is submodular (or even XOS) the approximation ratio improves to H,,.

Again, the approximation ratio is essentially tight due to the impossibility result
of [Dobzinski et al. 2008].

The Main Result

The main technical effort of this work is in identifying three settings in which
the potential mechanism is not only efficient and cost recovering, but also budget
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balanced.

Theorem: Let C be a submodular cost function. The Potential Mechanism is
‘H,,-budget-balanced and provides an approximation ratio of #,, to the social cost
in each of the following settings:

Supermodular valuations.
General symmetric valuations and player-wise symmetric cost function?.

Two players (n = 2) with general valuations.

5. OPEN QUESTIONS

We have presented a novel way to share the cost among participants. Yet, we do
leave many exciting questions open.

Computational Issues. We focused on proving existence of mechanisms with
good guarantees for combinatorial cost sharing. Of course we would like to have
a mechanism that both runs in polynomial time and has good guarantees, such as
economic efficiency and budget balance. We do not know whether such a mechanism
exists in general, however, we note that in the case of supermodular valuations and
a submodular cost function the potential mechanism is computationally efficient
whenever the value of the potential function is easy to compute.

The Performance of the Potential Mechanism. The potential mechanism
guarantees to cover the cost and to provide approximation ratio of 27H,, to the social
cost for every subadditive cost function. It is not clear whether the mechanism is
overcharging when considering a subadditive cost function (or even an XOS cost
function) that is not submodular. A first step to make in order to understand
the guarantees of the potential mechanism is to determine the overcharging of the
mechanism for a simple cost sharing when the cost function is subadditive.

The Power of GSP vs. Strategyproof Mechanisms. The potential mech-
anism, which is a VCG-based mechanism, is known to be vulnerable to strate-
gic behaviors of groups of players. We know very little about groupstrategyproof
mechanisms for combinatorial cost sharing. In the paper we provide a mechanism
that guarantees a poor approximation ratio of {2(n). Are there groupstrategyproof
mechanisms with better guarantees?

Impossibilities for Combinatorial Cost Sharing. In light of the impossibility
result of [Dobzinski et al. 2008], which provides a lower bound of Q(logn) to the
approximation ratio of the social cost in simple cost sharing, we are looking for
similar impossibilities results for combinatorial cost sharing, in particular for the
setting of supermodular valuations and submodular cost function (recall that the
potential mechanism is H,-budget-balanced and provides an approximation ratio of
H,, to the social cost in this case). Is there a mechanism which is S-budget-balanced
and provides approximation ratio of p to the social cost where 3, p < H,?

3 A valuation is symmetric if v; (S) = v;(T) whenever |S| = |T|. A cost function is player-symmetric
if C(S) = C(T') whenever |S;| = |T;| for all 3.

ACM SIGecom Exchanges, Vol. 16, No. 2, June 2018, Pages 38-44



Combinatorial Cost Sharing : 44

REFERENCES

AUSUBEL, L. M. AND MILGROM, P. 2006. The lovely but lonely vickrey auction. In Combinatorial
Auctions, chapter 1. MIT Press.

BLEISCHWITZ, Y., MONIEN, B., AND SCHOPPMANN, F. 2007. To be or not to be (served). In
International Workshop on Web and Internet Economics. Springer, 515—-528.

BLEISCHWITZ, Y. AND SCHOPPMANN, F. 2008. Group-strategyproof cost sharing for metric fault
tolerant facility location. In International Symposium on Algorithmic Game Theory. Springer,
350-361.

BLUMROSEN, L. AND DOBZINSKI, S. 2014. Reallocation mechanisms. In Proceedings of the Fifteenth
ACM Conference on Economics and Computation. EC '14. ACM, 617-617.

CAvAaLLO, R. 2006. Optimal decision-making with minimal waste: Strategyproof redistribution of
veg payments. In Proceedings of the fifth international joint conference on Autonomous agents
and multiagent systems. ACM, 882-889.

DEB, R. AND RAZzOLINI, L. 1999. Voluntary cost sharing for an excludable public project. Math-
ematical Social Sciences 37, 2, 123-138.

DoBzINsKl, S., MEHTA, A., ROUGHGARDEN, T., AND SUNDARARAJAN, M. 2008. Is shapley cost
sharing optimal? In International Symposium on Algorithmic Game Theory. Springer, 327-336.

Guo, M. AND CONITZER, V. 2009. Worst-case optimal redistribution of vcg payments in multi-unit
auctions. Games and Economic Behavior 67, 1, 69-98.

HART, S. AND MAS-COLELL, A. 1989. Potential, value, and consistency. Econometrica: Journal
of the Econometric Society, 589-614.

Hasummoro, K. AND SAITOH, H. 2015. Strategy-proof cost sharing under increasing returns:
Improvement of the supremal welfare loss. Games and Economic Behavior 89, 101-121.

LITTLECHILD, S. C. AND OWEN, G. 1973. A simple expression for the shapley value in a special
case. Management Science 20, 3, 370-372.

MEHTA, A., ROUGHGARDEN, T., AND SUNDARARAJAN, M. 2007. Beyond moulin mechanisms. In
Proceedings of the 8th ACM Conference on Electronic Commerce. ACM, 1-10.

MouLIN, H. 1999. Incremental cost sharing: Characterization by coalition strategy-proofness.
Social Choice and Welfare 16, 2, 279-320.

MouLIN, H. 2009. Almost budget-balanced VCG mechanisms to assign multiple objects. Journal
of Economic Theory 144, 1, 96 — 119.

MouLIN, H. AND SHENKER, S. 2001. Strategyproof sharing of submodular costs: budget balance
versus efficiency. Economic Theory 18, 3, 511-533.

ROBERTS, K. 1979. Aggregation and revelation of preferences. The Characterization of Imple-
mentable Choice Rules, 321-348.

ROUGHGARDEN, T. AND SUNDARARAJAN, M. 2009. Quantifying inefficiency in cost-sharing mech-
anisms. Journal of the ACM (JACM) 56, 4, 23.

SHAPLEY, L. S. 1953. A value for n-person games. Contributions to the Theory of Games 2, 28,
307-317.

ACM SIGecom Exchanges, Vol. 16, No. 2, June 2018, Pages 38-44



