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PAUL DÜTTING

Google Research and London School of Economics

and

THOMAS KESSELHEIM

University of Bonn

and

BRENDAN LUCIER

Microsoft Research

We survey the main results from [Dütting, Kesselheim, and Lucier 2020]:1 a simple posted-price
mechanism for subadditive combinatorial auctions with m items that achieves an O(log logm)

approximation to the optimal welfare, plus a variant with entry fees that approximates revenue.
These are based on a novel subadditive prophet inequality.
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1. INTRODUCTION

Consider the problem of welfare maximization in an online Bayesian combinatorial
auction. There is a set M of m objects to be divided among n agents. Each
agent i has a valuation function vi that assigns a value to every subset of objects.
These valuation functions are random, drawn independently from known (but not
necessarily identical) distributions. Agents arrive one by one in an arbitrary order.
When an agent arrives she reveals her valuation, and the decision-maker must
choose which subset of items to allocate to the agent and how much she should pay.
The goal is to design a dominant strategy truthful mechanism that approximately
maximizes the total expected value of the assignment.

If agent valuations are submodular (exhibit decreasing marginal values), then
there is a truthful mechanism that obtains at least half of the expected opti-
mal welfare in hindsight [Feldman et al. 2015].2 This mechanism has a simple
form: each item j is assigned a precomputed fixed price pj , then each agent in se-
quence is allocated the subset S of the remaining items that maximizes her utility

1FOCS 2020.
2This result actually applies to the more general class of XOS valuations.
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vi(S)−
∑

j∈S pj . In the special case with exactly one item, this result is the prophet
inequality due to Krengel and Sucheston [1977; 1978] and Samuel-Cahn [1984]. The
extension to submodular valuations over multiple items is part of a line of literature
extending prophet inequalities to more general allocation problems, yielding appli-
cations to truthful mechanism design for both welfare and revenue (e.g., [Chawla
et al. 2010; Kleinberg and Weinberg 2012; Feldman et al. 2015; Dütting and Klein-
berg 2015; Feldman et al. 2016; Rubinstein and Singla 2017; Chawla et al. 2019;
Dütting et al. 2020; Cai and Zhao 2017]).

One of the more vexing open problems in this space is whether these results ex-
tend to subadditive valuations. Valuation v is subadditive if v(S)+v(T ) ≥ v(S∪T )
for all sets S and T . Subadditive allocation has received considerable attention from
both the algorithmic and economic perspectives. For the former, there is a known
O(1)-approximate polynomial-time algorithm for the offline problem [Feige 2009]. It
is also known that running a sealed-bid auction for each object separately yields an
O(1) approximation to the optimal welfare at any Bayes-Nash equilibrium [Feldman
et al. 2013]. It’s tempting to guess that an O(1)-approximate prophet inequality is
possible as well, but prior to this work the best-known prophet inequality bound
(and truthful approximation to either welfare or revenue for the Bayesian setting)
was O(logm) [Feldman et al. 2015; Cai and Zhao 2017].

2. AN O(log logm) APPROXIMATION FOR SUBADDITIVE VALUATIONS

We make progress on this problem by obtaining an O(log logm)-approximate price-
based prophet inequality for subadditive combinatorial auctions. This means we can
find item prices so that the expected welfare of the corresponding dominant strategy
incentive compatible posted-price mechanism will be an O(log logm) approximation
to the expected welfare that could be achieved by an optimal offline algorithm.

Theorem 2.1 (Welfare, Existential). For subadditive valuations drawn in-
dependently from known distributions, there exist static anonymous item prices that
yield an O(log logm) approximation to the optimal expected welfare.

Theorem 2.1 is existential: it only shows the existence of appropriate prices. We
discuss how to turn this result into a computational (polytime) result in Section 5.
We also show how to apply our prophet inequality to revenue maximization, fol-
lowing a framework due to Cai and Zhao [2017]; we discuss revenue in Section 6.
At the heart of our approach is the following lemma, which for a given and fixed
subadditive valuation vi asserts the existence of item prices pj for a given set U
that satisfy a useful inequality.

Lemma 2.2 (Key Lemma). For every i ∈ N , subadditive function vi, and set
U ⊆M there exist prices pj for j ∈ U and a probability distribution λ over S ⊆ U
such that for all T ⊆ U∑

S⊆U

λS

(
vi(S \ T )−

∑
j∈S\T

pj

)
+
∑
j∈T

pj ≥
vi(U)

γ
, (1)

where γ ∈ O(log logm).

Given this lemma it is relatively straightforward to show Theorem 2.1. The idea
is to let (U1, . . . , Un) be the welfare-maximizing allocation, and for each Ui and
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j ∈ Ui use the prices pj from Lemma 2.2 with U = Ui. The welfare argument then
proceeds by rewriting the welfare as the sum of buyer utilities and revenue, with
Lemma 2.2 providing a tool to lower bound the buyer utilities.

In this lower bound argument the set T from Lemma 2.2 can be interpreted
as the set of items which are already gone when we consider agent i, and λ is a
distribution over sets of items S that agent i considers to buy. Of course, agent i
can only buy items that are still available, so she only derives value from S \ T .
The lemma therefore establishes that the utility that can be obtained by agent i,
plus the revenue obtained from selling the items in T , is at least a factor γ of her
contribution to the optimal welfare.

Before describing our approach to proving Lemma 2.2, let’s take a brief detour
to compare with previous results and the barrier at O(logm).

3. ASIDE: BALANCED PRICES

For intuition, consider a simpler case of Lemma 2.2 where the valuation v is additive,
and where λ is constrained to always choose S = U with probability 1. In this case
we could set price pj = 1

2v(j) for each item j. That is, prices mirror a scaled-down
version of the valuation itself. By additivity, the left-hand side of (1) becomes
v(U \T )− 1

2v(U \T )+ 1
2vt(T ) = 1

2vi(U \T )+ 1
2vi(T ). Since v is additive, inequality

(1) holds with γ = 1/2.
If the valuation is not additive, this pricing strategy requires some modification.

We’d still like to find prices that somehow approximate the valuation v. It suffices
to find prices such that (a) the total price of U is approximately v(U), and (b) the
total price of any T ⊆ U is (approximately) at least v(U)− v(U \T ), the value lost
if T is removed. Prices that satisfy these properties are said to be (α, β)-balanced,
where α and β capture the approximation in (a) and (b) respectively [Kleinberg
and Weinberg 2012; Dütting et al. 2020]. If prices are (α, β)-balanced, then (1) will
be satisfied with γ = O(αβ) even when λ chooses U with probability 1.

The O(1)-approximation results for submodular valuations follow because sub-
modular valuations admit (1, 1)-balanced prices [Feldman et al. 2015]. For subad-
ditive valuations, it is known that (O(logm), 1)-balanced prices always exist, but
there are examples in which no better approximation is possible [Feldman et al.
2015]. So breaking the O(logm) barrier requires a different approach.

Luckily for us, balancedness is stronger than what’s needed to satisfy Lemma 2.2,
and for our welfare result more generally. For example, suppose v is a unit-demand
valuation that assigns value 1 to each item in U . This valuation admits (1, 1)-
balanced prices: for example, pj = 1/m for each j. These prices are low enough
that the entire set U is “affordable” – the total price of U is equal to v(U) = 1. But
this feels unnecessary, since the unit-demand buyer would never actually purchase
more than one item. Suppose instead we set pj = 1/2 for each j. These prices are
not very balanced, since the sum of all prices is much larger than v(U). But they
nevertheless enable high-welfare outcomes: if even a single item in U is available
when agent i arrives, she can purchase it and obtain high utility. Such high prices
suggest and facilitate an outcome where the buyer targets a small number of items
that carry most of the value. In Lemma 2.2, this added flexibility is captured by the
distribution λ: for this unit-demand example, one can verify that setting pj = 1/2
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and choosing λ to be a uniform distribution over all singletons would satisfy (1) with
γ = 1/2. Our general construction uses this additional flexibility to find improved
prices for subadditive valuations, where good balanced prices may not exist.

4. FINDING PRICES FOR SUBADDITIVE VALUATIONS

We now return to Lemma 2.2 and give a brief overview of the proof techniques.
To prove Lemma 2.2 we write down an LP and use strong LP duality to show the
following equivalent condition: there exists a probability distribution λ over set of
items S so that for every probability distribution µ with

∑
T :j∈T µT ≤

∑
S:j∈S λS ,

i.e., that puts at most the same probability mass on each item j as distribution λ,
it holds that ∑

S,T

λS · µT · vi(S \ T ) ≥ 1

γ
· vi(U). (2)

We interpret the left-hand side of (2) as a zero-sum game, in which the protagonist
chooses λ and the antagonist chooses µ, and the protagonist’s goal is to maximize∑

S,T λS · µT · vi(S \ T ). This has a natural interpretation: the designer’s goal
is to find a purchasing strategy for the buyer that maximizes the value of the set
they obtain, and the adversary’s goal is to arrange the purchasing outcomes so that
removing all previously-sold items (i.e., T ) steals most of the value from the buyer,
leaving their realized value vi(S \ T ) as small as possible.

We prove a lower bound on the value of this game by restricting attention to
distributions λ that put the same probability mass q on each item. The crux of our
argument is that for each such “equal-marginals distribution” λ with corresponding
probability q, the value of the zero-sum game is at least f(q)− f(q2), where f(q) is
the optimal expected social welfare that can be achieved by a distribution over sets
of items S ⊆ U that puts probability mass at most q on each item. Intuitively, if it’s
possible for the adversary to choose some distribution µ over T that is guaranteed
to “steal the value” from the buyer’s distribution λ over S, then it must be that
the set S ∩ T has high expected value. But if λ and µ each place probability at
most q on each item, then the distribution over S ∩ T places probability at most
q2 on each item. Thus, if the adversary can perform well in the zero-sum game for
some q, this directly implies that we should consider the game with the significantly
smaller marginal probability q2.

To turn this intuition into an O(log logm) bound, we let the protagonist consider

such “equal marginal distributions” for q = 2−2
k

for k = 0 to k = O(log logm), and
obtain a lower bound on the value of the zero-sum game by taking the average of
the sum of the corresponding lower bounds f(q)−f(q2). Now by the choice of the q
this telescoping sum has O(log logm) terms, and it evaluates to f(1/2)− f(1/m2).
The proof is completed by observing that the latter is at least (1/2− o(1)) · vi(U).

5. COMPUTING PRICES IN POLYNOMIAL TIME

Theorem 2.1 shows that appropriate item prices exist. In the paper we also show
how to turn our existential proof into a polytime construction, assuming appropriate
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demand query access to the valuation functions.3

Theorem 5.1 (Welfare, Computational). For subadditive valuations drawn
independently from known distributions and any ε > 0, there is a polytime (in n,
m, and 1/ε) algorithm to compute static and anonymous item prices that yield an
O(log logm) approximation to the optimal expected welfare up to an additive error
of ε.

The additive ε term in Theorem 5.1 comes from errors introduced by sampling
from the distributions over valuations. But the construction is non-trivial even in
the full information case where the valuations are fixed and no sampling is required.
Remember that our existential analysis used a dual formulation where we argued
about equilibrium distributions λ and µ of a zero-sum game, rather than prices. We
prove Theorem 5.1 by reformulating our optimization problem in a way that avoids
having to compute these equilibrium distributions directly. This reformulation
involves taking yet another dual, bringing us back into the space of prices.

Specifically, for a given constraint q on the marginal allocation probabilities, we
note that the value f(q2) can be encoded as the solution to a configuration LP—
that is, a fractional allocation problem—under the constraint that no more than a
q2 fraction of any item can be allocated in expectation. We then take a dual of this
configuration LP, resulting in a new program whose variables can be interpreted
as item prices (but different from the original optimization over item prices that
we started with). We can compute a solution to this dual LP (and hence item
prices) in polynomial time with the Ellipsoid method since a separation oracle can
be implemented with demand queries. The final prices we use for Theorem 5.1 are
the prices from this dual LP solution scaled by q.

It might seem strange that we start with an LP for f(q2), rather than f(q), then
scale prices by q at the end. The intuition behind this construction is as follows.
In Section 4 we bounded the value of the zero-sum game by f(q) − f(q2). Here
f(q) is the highest expected value that the protagonist could obtain from a choice
of λ if the adversary abstained, and f(q2) is an upper bound on how much value
the antagonist can take away by choosing µ optimally. By taking the dual prices
for the configuration LP for f(q2) and scaling them by q, we are effectively setting
prices that approximate the welfare loss due to the antagonist’s strategy, which is
to say the worst-case loss from excluding items that have already been sold.

6. REVENUE MAXIMIZATION

We also show how to apply our new prophet inequality to the design of simple and
dominant strategy incentive compatible mechanisms that approximate the Bayesian
optimal revenue. Our revenue approximation makes use of a framework for con-
structing simple mechanisms due to Cai and Zhao [2017], which builds upon a
recent literature applying a duality approach to revenue maximization [Cai et al.
2016]. Cai and Zhao established an O(logm) revenue approximation for subaddi-
tive valuations under a natural item independence assumption. A key step in their
analysis invokes a posted-price-based prophet inequality for welfare maximization,

3A demand query returns, for a given valuation v and choice of item prices (p1, . . . , pm), a subset

of items S that maximizes v(S) −
∑

j∈S pj .
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augmented to allow ex ante allocation probability constraints. We show that our
prophet inequality, extended to handle arbitrary (not necessarily equal) constraints
on the marginal allocation probabilities, can be used to improve the revenue ap-
proximation from O(logm) to O(log logm).

7. GOING BEYOND O(log logm)

In the paper we demonstrate that the O(log logm)-factor that shows up in all our
bounds is best possible using our approach. In particular, our constructions use
only distributions λ that set the same marginal probability q of allocating each
item. We show by way of example that such distributions (and their associated
dual prices) can suffer loss as high as Ω(log logm).

Our restriction to equal-marginal distributions was crucial for our approach to
optimizing over distributions. It is natural to wonder whether our bound could
be improved by relaxing the equal-marginals assumption and using an arbitrary
profile of marginal distributions. We conjecture that an O(1)-approximate prophet
inequality can be achieved using item prices that are dual to a distribution with
unequal marginals. We leave resolving this conjecture as an open problem.
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