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1. INTRODUCTION

The competitive (aka market) equilibrium is a key economic concept that mod-
els the allocation of resources at the steady state of an economy, where supply
equals demand. The theory of general equilibrium started from the studies of Wal-
ras [Walras 1874; Brainard and Scarf 2000] and was made mathematically rigorous
by [Arrow and Debreu 1954], who proved the existence of a competitive equilibrium
under mild conditions.
There is a rich literature on markets, with efficient algorithms for computing

competitive equilibria [Scarf 1977; Jain et al. 2003; Deng et al. 2003; Codenotti
et al. 2005; Codenotti et al. 2005; Garg and Kapoor 2006; Jain 2007; Ye 2008; De-
vanur et al. 2008; Devanur and Kannan 2008; Garg et al. 2015; Duan and Mehlhorn
2015; Duan et al. 2016; Garg and Végh 2019; Bei et al. 2019] and computational
hardness results for several markets with non-linear utilities [Nisan et al. 2007;
Codenotti et al. 2006; Chen et al. 2009; Vazirani and Yannakakis 2011].
The notion of a competitive equilibrium abstracts away how equilibria are reached,

if at all; this motivates dynamic processes where the agents continuously adapt their
strategies to the current state of the market. On this topic, [Fisher 1983] writes:

Whether or not the actual economy is stable, we largely lack a convincing
theory of why that should be so. Lacking such a theory, we do not have
an adequate theory of value, and there is an important lacuna in the
center of microeconomic theory... To only look at situations where the
Invisible Hand has finished its work cannot lead to a real understanding
of how that work is accomplished.

Market Dynamics. A stream of literature studied dynamics in markets, starting
with a fundamental process known as tâtonnement, which is a trial and error method
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of adjusting the prices: if at any point in time there is an excess demand for a good,
then its price increases; if there is an excess supply instead, then the price of the
good decreases. The analysis of convergence of tâtonnement dates back to [Arrow
et al. 1959], while [Scarf 1960] and [Gale 1963] gave examples of cycling. For a
survey, see the book of [Mas-Collel et al. 1995]. For markets with weak gross
substitutes utilities, a polynomial time convergence of a discrete time process was
shown by [Codenotti et al. 2005]. [Cole and Fleischer 2008] showed fast convergence
for both static and ongoing markets. A similar analysis was done for markets with
complementarities [Cheung et al. 2012; Cheung and Cole 2014; Avigdor-Elgrabli
et al. 2014] and for Eisenberg-Gale markets [Cheung et al. 2019].

Dynamics in Networked Markets. In networked markets the agents are con-
nected on an underlying graph and take decisions influenced by interactions with
their neighbors. Fisher, exchange, and production markets with linear utilities are
examples of networked markets.
Dynamics in networked markets exhibit a rich landscape of mechanisms, behav-

iors of the agents and patterns such as convergence or oscillations of prices, growth,
and inequality [Wu and Zhang 2007; Zhang 2011; Birnbaum et al. 2011; Brânzei
et al. 2018; Cheung et al. 2018; Cheung et al. 2019; Cheung et al. 2021].
We survey the proportional response dynamic in exchange markets with linear

utilities from [Brânzei et al. 2021] and suggest several directions for future work.

2. EXCHANGE MARKETS

Let [n] = {1, . . . , n} be a set of agents, each of which brings to the market a bundle
of divisible goods. We focus on the basic setting where each agent i brings an
eponymous good i; w.l.o.g. there is one unit of the good.

The agents have linear utilities, described by a matrix A = (ai,j)
n
i,j=1 such that

ai,j ≥ 0 is the value of agent i for one unit of good j. The utility of player i for a
bundle xi = (xi,1, . . . , xi,n) is ui(xi) =

∑n
j=1 ai,j · xi,j , where xi,j is the amount of

good j received by agent i. W.l.o.g., for each agent i there is a good j with ai,j > 0
and for each good j, there is an agent i with ai,j > 0.

2.1 Market Equilibria

The [Arrow and Debreu 1954] theorem states there is a market equilibrium (p,x),
such that x = (x1, . . . ,xn) is an allocation and p = (p1, . . . , pn) ̸= 0 a price vector
where pi is the price of good i. At these prices, each player i

(1) sells good i and collects revenue pi, which becomes its budget, and

(2) purchases an optimal bundle xi given its budget constraint.

The theorem guarantees that in the equilibrium the price of bundle xi is pi.
There are several polynomial time algorithms for computing market equilibria in

exchange markets with linear utilities (see, e.g. [Jain 2007]). A strongly polynomial
time algorithm was designed in [Garg and Végh 2019].

2.2 Shapley-Shubik Market Game

[Shapley and Shubik 1976] proposed a game to explain the formation of prices in
markets, which is known as Trading Posts or the Shapley-Shubik game.
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In our market setting, the game proceeds as follows. Each player i brings to the
market one unit of good i and a budget Bi, which has no intrinsic value but is used
to facilitate exchange. Then player i submits bids bi,j ≥ 0, where

∑n
j=1 bi,j = Bi.

Each good j is allocated in proportion to the bid amounts, so player i receives

xi,j =

{
bi,j∑n

k=1 bk,j
, if bi,j > 0

0, otherwise

The sum of bids pj =
∑n

k=1 bk,j at item j is the price of the good.
The existence and quality of equilibria of the Shapley-Shubik game have been

studied under various names such as Trading posts and proportional share mecha-
nism (see, e.g., [Feldman et al. 2009]).

2.3 Proportional Response Dynamics

Tâtonnement does not converge to market equilibria in exchange markets when the
players have linear utilities, thus different explanations for how market equilibria
may be reached are needed.
We describe a dynamic where the players repeatedly bring to the market one

unit of their good and a budget. The players submit bids and receive allocations
according to the Shapley-Shubik game. Then the seller of each good collects the
money made from selling, which becomes its budget in the next round, and updates
their bids in proportion to the contribution of each good in its utility.
This dynamic is known as proportional response, and was studied in exchange

markets in [Brânzei et al. 2021].

Definition 2.1. (Proportional Response) At each time t = 0, 1, . . ., each
player i brings one unit of an eponymous good and the next steps take place:

Shapley-Shubik Game: Each player i bids bi,j(t) on every good j. Player
i gets from each good j a fraction proportional to their bid:

xi,j(t) =

{
bi,j(t)∑n

k=1 bk,j(t)
, if bi,j(t) > 0

0, otherwise

The player’s utility is ui(t) =
∑n

k=1 ai,k · xi,k(t).

Bid Update: Player i collects the money from selling, which becomes its
budget in the next round: Bi(t + 1) =

∑n
k=1 bk,i(t) and updates the bids

proportionally to the contribution of each good in their utility :

bi,j(t+ 1) =
(

ai,j ·xi,j(t)
ui(t)

)
·Bi(t+ 1)

2.4 Example

Consider the two-player market in Figure 1. The valuations are a1 = (2, 5) and
a2 = (3, 4); the bid amounts are shown as coins on the edges.
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Fig. 1: A two player market with valuations and bids shown as coins on the edges. For example,
player 1 has value 2 for one unit of good 1 and bids one dollar on good 1; it has value 5 for one

unit of good 2 and bids four dollars on it.

Let bi(t) = (bi,1(t), . . . , bi,n(t)) denote the bids submitted by player i in round
t, where bi,j(t) is the bid of player i for good j at time t. The first round of the
dynamic proceeds as follows:

Shapley-Shubik Game: Players submit bids b1(0) = (1, 4) and b2(0) = (2, 2).
The prices induced by these bids are p1(0) = b1,1(0) + b2,1(0) = 1 + 2 = 3 and
p2(0) = b1,2(0) + b2,2(0) = 2 + 4 = 6.

The allocation is xi,j(0) =
bi,j(0)
pj(0)

: x1(0) = (13 ,
4
6 ) and x2(0) = (23 ,

2
6 ). The

utilities are u1(0) = 2 · 1
3 + 5 · 4

6 = 4 and u2(0) = 3 · 2
3 + 4 · 2

6 = 10/3.

Bid Update: The updated budgets are B1(1) = p1(0) = 3 and B2(1) = p2(0) = 6.

The updated bids are bi,j(1) =
ai,j ·xi,j(0)

ui(0)
· Bi(1). Thus player 1’s bids are

b1,1(1) =
(

2·1/3
4

)
·3 = 1/2 and b1,2(1) =

(
5·4/6

4

)
·3 = 5/2. A similar calculation

shows player 2’s bids are b2,1(1) = 36/10 and b2,2(1) = 24/10.

Figure 2 shows a simulation of this dynamical system for 120 rounds.

(a) Allocations (b) Utilities (c) Prices

Fig. 2: A simulation of proportional response dynamics on the two-player market from Figure
1. The X axis shows the time step, which ranges from 0 to 120. Figure (a) shows the fraction

received by player 1 from good 1 in red and from good 2 in blue; the fraction received by player 2
from good 1 is shown in green and from good 2 in orange. Figure (b) shows the utility of player 1
in red and of player 2 in black. Figure (c) shows the price of good 1 in red and of good 2 in black.
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2.5 Properties of Proportional Response in Exchange Markets

We are interested in the long term behavior of the dynamical system in Defini-
tion 2.1. [Brânzei et al. 2021] show the dynamic converges to market equilibrium
allocations and utilities for any non-degenerate initial bids (i.e. where bi,j(0) > 0
whenever ai,j > 0).
Potential function. The key to analyzing the dynamical system is to find a

potential function. Let p∗ = (p∗1, . . . , p
∗
n) and x∗ = (x∗

i,j)
n
i,j=1 be an equilibrium

price vector and allocation, respectively. Let b∗i,j = p∗j · x∗
i,j for each i, j ∈ [n].

W.l.o.g., the total amount of money in the economy is 1:
∑n

i,j=1 bi,j(0) = 1.

For each t ∈ N and i, j ∈ [n], let

zi,j(t) =


(

b∗i,j
bi,j(t)

)b∗i,j
if b∗i,j > 0 and bi,j(t) > 0

1 otherwise
(1)

Define the function

f(t) =

n∏
i,j=1

zi,j(t) (2)

Then f(t) is a potential function, with f(t + 1) < f(t) at all times t where
the utilities are not the equilibrium utilities. By using connections between the
exchange market and the Eisenberg-Gale convex program, it can be shown that the
fixed point utilities coincide with the market equilibrium utilities. This will also
imply that the allocations converge to market equilibrium allocations.
Bid cycling. While the allocations and utilities converge, the bids and prices

may cycle. For example, consider the economy and initial bids in Figure 3. Players
1 and 2 will continue swapping their budgets throughout time, so the prices of the
two goods will oscillate.

Fig. 3: Two player market where prices cycle in the proportional response dynamics. The valu-

ations are a1,1 = 0, a1,2 = 5, a2,1 = 3, a2,2 = 0. The initial bids are b1,1(0) = 0, b1,2(0) = 4,
b2,1(0) = 2, and b2,2(0) = 0. The price of good 1 will alternate between 2 and 4 throughout time.

The limit cycles of the dynamic can be characterized in the following way: there
exist equivalence classes of players such that

(i) within each class, the ratio of price to equilibrium price is a constant, and

(ii) the classes form a cycle, where the players in each class only buy goods
from the players in the next class in the cycle.
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Lazy dynamic. [Brânzei et al. 2021] also define a lazy version of the dynamic,
where the players may save money for later; they show this converges in everything:
utilities, allocations, and prices.

The definition of the lazy dynamic is similar to Definition 2.1, except in each
round t, each player i only spends a fraction αi of its budget and saves the rest in
the bank. After the bids and allocations are computed, player i gathers all their
money, both from selling their good and the money saved in the bank. This amount
is the player’s total budget, which is again split in a fraction of αi used for bidding
in round t+ 1 and a fraction of 1− αi saved in the bank.

The cycling of the prices appears in the extreme case of the lazy dynamic where
each player spends their whole budget in each round, i.e. αi = 1 for each player i.

The difference between the lazy and non-lazy dynamic is illustrated in Figure 4.

(a) (b)

Fig. 4: Prices for the market in Figure 3, showing the difference between the non-lazy and lazy

dynamic. Figure (a) shows the dynamic in Definition 2.1, where the players spend their whole
budget in each round. Figure (b) shows the lazy version of the dynamic, where player 1 spends a

fraction α1 = 1/2 of their money in each round and player 2 spends a fraction of α2 = 2/3.

2.6 History of proportional response dynamics

Fisher markets. Proportional response dynamics were first studied in Fisher
markets as an alternative to tâtonnement, since the latter process does not converge
to market equilibria. [Zhang 2011] showed that proportional response converges to
market equilibria in Fisher markets with linear utilities. Fisher markets are a special
case of exchange markets, where the graph is bipartite and the agents are divided
in buyers and sellers. Each seller brings a good for sale and each buyer brings a
budget. The buyers only have value for the goods while the sellers only have value
for the money.

[Birnbaum et al. 2011] further showed the process is equivalent to gradient descent
on a convex program that captures the equilibria for linear utilities. [Cheung et al.
2018] show that proportional response dynamics converges to market equilibria for
the entire range of CES utilities including complements, with linear utilities on one
extreme and Leontief utilities on the other extreme. [Cheung et al. 2019] show
that the dynamics stays close to equilibrium even when the market parameters are
changing slowly over time, once again for CES utilities.
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Production markets. [Brânzei et al. 2018] studied proportional response dy-
namics in production markets, where the dynamic leads to growth of the market,
i.e. the amount of goods produced increase over time, but also to growing inequality
between the players on the most efficient production cycles and the rest. In partic-
ular, the dynamic learns through local interactions a global feature of the exchange
graph—the cycle with the highest geometric mean.
There is a similarity between proportional response dynamics in the production

market and the Lotka-Volterra model [Lotka 1910; Volterra 1928; Wangersky 1978]
which studies interdependence of animals and how they help or destroy each other
based on their interactions and reproduction.
Tit-for-tat in exchange markets. [Wu and Zhang 2007] studied a tit-for-

tat dynamic, which does not use money, in a special type of exchange market where
the goods have common value (i.e. the value of any good j is the same for every
player i: vi,j = vj), and showed it converges to market equilibria. This setting is
relevant to networking applications.
Connections with blockchain mining. There are connections between pro-

portional response dynamics, and blockchain mining, since miners in the blockchain
setting succeed with probability roughly proportional to the effort invested. [Che-
ung et al. 2021] studied learning dynamics in several production economies, such
as blockchain mining, peer-to-peer file sharing and crowdsourcing. They also study
Fisher markets and show that proportional response dynamics converges to market
equilibria when the players have quasi-linear utilities.

3. DISCUSSION AND FUTURE DIRECTIONS

Several directions remain open. An immediate question is the following: What is
a suitable generalization of the dynamic for exchange markets in the most general
case where each player brings multiple goods?
What are natural generalizations of proportional response dynamics in networked

markets, such as Fisher and exchange markets with linear utilities or production
markets with linear production? For example, consider the process where the al-
location is done via the Shapley-Shubik mechanism, but the players change their
investment fractions using multiplicative weight updates. Does this process con-
verge to a market equilibrium, in either Fisher or exchange markets with linear
utilities? What other allocation mechanisms (e.g. auctions) can be used for allo-
cating goods given that players in networked markets will repeatedly interact with
their neighbors? What features of such systems are relevant for finding potential
functions?
It would also be interesting to explore further the connections between propor-

tional response dynamics and blockchain mining [Cheung et al. 2021]. How should
resource allocation mechanisms be designed given the inherent dynamic nature of
the blockchain system?
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