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This is a solution to Vincent Conitzer’s puzzle “Communicating to Plan Noam Nisan’s
60th Birthday Workshop”, which appeared as below in the July 2022 issue of SIGecom
Exchanges.

Michael, Moshe, and Shahar—i.e., a constant number of organizers—are planning the
workshop for Noam’s 60th birthday, and are trying to predict who, out of n people, will
attend. Whether a person wants to attend is a function of who else attends. “The more
the merrier,” so for each person i, if i would attend when S is the set of other attendees,
and S ⊆ S′, then i would attend when S′ is the set of other attendees. Let Si be the set
of sets S of other people for which i would attend (so, Si is upward closed).

To split the work, the organizers partition the set of n people among themselves. Sub-
sequently, each of them figures out, for every player i in his own part, what Si is. (Note
that each organizer thus still needs to think about how much “his” people like the people
in the other parts. But each organizer knows Si only for people i in his own part.) At this
point, the organizers, who of course want the workshop to be successful, must commu-
nicate with each other to find the largest possible set of people S∗ that can consistently
attend (i.e., the largest set with the property such that every person in it will attend given
that everyone else in the set attends: i.e., for each i ∈ S∗, we have S∗ \ {i} ∈ Si, and S∗

is the largest set with that property).
Up to a constant factor, how many bits of communication do the organizers need to

figure this out?

We claim that the organizers need Θ(n logn) bits of communication.

1. UPPER BOUND

We begin by asking the following question. When would someone not attend the birthday
celebration? Certainly if Si = ∅ then person i would not attend. It turns out that this is
the only possible restriction preventing someone from attending.

Claim 1.1. If Si ̸= ∅ for all i, that is, for every person i there is at least one set S of
other attendees for which i would attend, then S∗ = [n].

Claim 1.1 follows directly from “the more the merrier” and implies the following recur-
sive algorithm for the birthday problem:

—If an organizer sees that Si = ∅ for a person i in their part, they communicate the
identity of i to the other organizers using O(logn) bits and then remove person i from
consideration.

—Since person i provably cannot attend, all of the organizers remove all sets containing i
from each Sj in their parts. Note that the Sj remain upward-closed and hence we have
reduced to an instance of the same problem with n− 1 people.

—Repeat the above procedure until among the people currently in consideration, which
is possibly the empty set, there is no person i for which Si ̸= ∅.
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Claim 1.1 shows that S∗ is precisely the set of people remaining after the above algo-
rithm is run. Since the identity of each person is communicated at most once in the above
procedure, the total communication is O(n logn).

We remark that the above procedure is reminiscent of Moulin’s mechanism for cost-
sharing in which a designer decides on which players to be served and what cost to charge
them through an iterative process. As long as there exists at least one player that has a
cost-share strictly greater than their bid, that player is removed from consideration and
new cost-shares are computed with the remaining players. This process is continued until
all remaining players’ cost-shares are at most their bids, at which point the mechanism
terminates and serves this remaining set of players. See [Moulin 1999] and [Moulin and
Shenker 2001] for more details on Moulin’s mechanism.

2. LOWER BOUND

Now we prove that Ω(n logn) bits of communication are required to compute S∗. For
simplicity, suppose there are only two organizers, Michael and Moshe, and that the number
n of people is even. Number the people 1, 2, . . . , n and suppose that Michael knows Si

for all odd i, which we denote by Michael’s input x to the problem, and Moshe knows Si

for all even i, which we denote by Moshe’s input y. We call the pair (x, y), which is the
aggregated set of preferences, the input to the problem, and we call the resulting set S∗

the answer.
Consider the communication transcript of the organizers, which consists of all bits

communicated between them as well as the final answer. Without loss of generality,
assume that the two players alternate in communicating bits, with Michael communicating
first. We want to show that the communication transcript must have size Ω(n logn). We
use the fooling set method, a lower bound technique in communication complexity that
appears in Nisan’s own book, co-authored with Kushilevitz, on the subject [Kushilevitz
and Nisan 1996]. The idea of the fooling set method is that if two distinct input pairs
have the same communication transcript, then we can find two other pairs that also have
this same transcript.

Claim 2.1. Let (x, y) and (x′, y′) be two inputs to Michael and Moshe that have the
same communication transcript. Then the inputs (x′, y) and (x, y′) also have this same
communication transcript.

Proof. Each bit communicated by a player is a deterministic function of that player’s
input and the bits seen so far. Since (x, y) and (x′, y′) have the same transcript, the first
bit b1 sent, which depends only on Michael’s input, is the same whether Michael has input
x or x′, so the first bits of the transcripts of (x′, y) and (x, y′) are also b1. The second
bit b2 sent is a function of b1, which we already argued is the same in all four transcripts,
and Moshe’s input. Since the transcripts of (x, y) and (x′, y′) have the same second bit
b2, (x

′, y) and (x, y′) also have b2 as their second bits. Continuing inductively, we deduce
that (x, y), (x′, y′), (x′, y), (x, y′) all produce identical transcripts.

Our strategy will be to find many input pairs (x1, y1), (x2, y2), . . . , (xm, ym) all with the
same answer S∗. By the Pigeonhole Principle, if m is large enough and the amount of
communication is limited, then two of these input pairs (xi, yi), (xj , yj) will have the same
communication transcripts. By Claim 2.1, the input pairs (xi, yj) and (xj , yi) will also
have this same communication transcript and in particular the same answer. However, if
we had constructed these inputs from the start in such a way that all inputs (xi, yj) for
i ̸= j actually had answers that are different than S∗, then this would yield a contradiction.

Consider all parity-alternating permutations σ = σ1σ2 · · ·σn of the n people such that
σ1 is odd, σ2 is even, and so on. Note that there are n

2
ways to choose σ1 since there are
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n
2
odd people, n

2
ways to choose σ2 since there are n

2
even people, n

2
− 1 ways to choose

σ3 since there are n
2
− 1 remaining odd people, and so on, for a total of

((
n
2

)
!
)2

such
permutations.

We say that each parity-alternating permutation σ = σ1 . . . σn induces an input to the
birthday problem as follows. Let Sσi = {S : ∃j < i, σj ∈ S}, that is, the preference of
person σi is “I would attend only if at least one of σ1, . . . , σi−1 attends.” For i = 1 this
simply means that person σ1 would not attend. We note that the Sσi are indeed upward-
closed. For all inputs (x, y) induced by such permutations σ, we have S∗ = ∅ since σ1

would not attend, which prohibits σ2 from attending, and so on.

Claim 2.2. For any two distinct parity-alternating permutations σ and σ′, which in-
duce preferences (x, y) and (x′, y′) respectively as inputs to Michael and Moshe, the answers
to the inputs (x′, y) and (x, y′) are not S∗ = ∅.

Example 2.3. Consider the permutations σ = 1234 and σ′ = 1432, which induce the
inputs

x = “1 would not attend”, “3 would only attend if 1 or 2 does”

y = “2 would attend only if 1 does”, “4 would attend only if 1 or 2 or 3 does”

x′ = “1 would not attend”, “3 would attend only if 1 or 4 does”

y′ = “2 would attend only if 1 or 4 or 3 does”, “4 would attend only if 1 does”.

Note that if the input was (x′, y) then 3 and 4 can attend together, and if the input was
(x, y′) then 2 and 3 can attend together.

Proof of Claim 2.2. By symmetry, we can consider only the pair (x, y′). We have

x =“σ1 would not attend”,

“σ3 would only attend if σ1 or σ2 does”, . . .

y′ =“σ′
2 would attend only if σ′

1 does”,

“σ′
4 would attend only if σ′

1 or σ′
2 or σ′

3 does”, . . .

If σ′
1 ̸= σ1, then removing person σ1 from consideration according to the recursive algo-

rithm in the upper bound does not make any other Si empty. This is because σ′
2 could

attend if σ′
1 does, and everyone else has at least two people that could allow them to at-

tend. Hence σ′
1 ̸= σ1 implies S∗ = [n]\{σ1}, so we can assume σ′

1 = σ1, which means that
σ′
1 and σ′

2 would not attend. If σ′
2 ̸= σ2, then removing σ′

1 and σ′
2 from consideration does

not make any other Si empty. This is because σ3 could attend if σ2 does, and everyone
else has at least three people that could allow them to attend. Hence σ′

2 ̸= σ2 implies
S∗ = [n] \ {σ′

1, σ
′
2}, so we can assume σ′

2 = σ2. Continuing inductively, at each step we
have either S∗ ̸= ∅ or σ′

i = σi. We conclude that either S∗ ̸= ∅ or σ′ = σ.

By Claim 2.2, the set of m =
((

n
2

)
!
)2

parity-alternating permutations induce m input
pairs (x1, y1), . . . , (xm, ym) all with the same answer S∗ = ∅ but such that all inputs (xi, yj)
for i ̸= j have answers S∗ ̸= ∅. If the number of bits of communication is less than log2 m =
Ω(n logn), then by the Pigeonhole Principle two parity-inducing permutations generate
the same communication transcript, which is impossible by Claim 2.1. We conclude that
the communication complexity of the birthday problem is Ω(n logn).
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