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1. INTRODUCTION

If, in 2018, you had asked about the most promising advance in artificial intelli-
gence, the answer almost certainly would have been deep reinforcement learning.
AlphaZero, trained using deep RL, had just been crowned the world’s best player of
chess, Go, and Shogi [Silver et al. 2018], and the application to real-world domains
seemed imminent. “Artificial intelligence,” said David Silver, winner of the 2019
ACM Prize in Computing, “is deep reinforcement learning.” [Silver 2016]
Today, the promise of deep RL has not been realized. The fundamental challenge

is that reinforcement learning agents require an environment in which to train, and
creating an environment that reliably simulates the real world has proven difficult.
The stories of RL successes are almost universally stories of pre-existing, reliable
training grounds. This letter discusses an exception—an RL agent that bargains
on eBay [Green and Plunkett 2022]—and the promise, as well as the challenges, it
portends for applications of RL in economic domains and in the real world more
generally. Our view is optimistic, if somewhat dystopian: in the near future, many
economic decisions will be made by reinforcement learning agents.

2. BACKGROUND

Reinforcement learning agents learn by trial and error. They observe the state of
the world (e.g., the board position in chess), take an action (a move) in a given state
(board position), receive a reward (based on the outcome of the game), and reinforce
actions that lead to higher rewards. To learn, RL agents need an environment that
communicates the consequence of an action: the state in which it will take an
action next, and the reward it receives for arriving at that state. By traversing
many—often millions, sometimes billions—of states, the agent can learn a policy:
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an action to take in every state that maximizes a potentially distant reward, e.g.,
a move to make in every board position that maximizes the probability of winning.
In deep RL, the mapping from states to actions is learned by a neural network.

The most ready domains for RL are those in which a reliable environment already
exists. Among the most popular settings for testing RL algorithms are Atari games,
for which the environment is the game itself [Hafner et al. 2019]. The state is defined
by the pixels on the screen, an action is a move of the joystick, and the reward is
the score. When the agent takes an action, the game responds by updating the
pixels on the screen and the player’s score.
Recent RL-driven advances in algorithms for matrix multiplication [Fawzi et al.

2022] and sorting [Mankowitz et al. 2023] also exploit pre-existing environments.
For sorting, the state is the current order of elements in the array, an action may
swap two elements, for instance, and the reward is a penalty for each action taken
(so that the optimal policy is one that sorts an array in the fewest number of
actions). When the agent takes an action, the next state is simply the new ordering
of the array.
Adversarial games like chess pose an added complication: after the agent acts,

the state in which it acts next depends on how the opponent responds. Hence,
the training environment must incorporate the opponent’s response. This problem
neatly disappears in two-player, zero-sum games, such as chess and Go. To act
optimally in these games, an agent need not learn to best respond to any opponent.
Rather, it is sufficient to learn a best response to a best-responding opponent,
which an RL agent can learn by playing against itself. By virtue of the minimax
theorem, an equilibrium strategy learned in this manner will be optimal against
any opponent, regardless of their intelligence. In a matter of days, AlphaZero went
from knowing nothing about chess save the rules to the best chess player in the
world simply by playing against itself millions of times.

3. BARGAINING ON EBAY

Many real-world games, and particularly those of economic interest, are neither
two-player nor zero-sum. Bargaining, for instance, is multi-player: a seller may
bargain with more than one buyer. It is also not zero-sum: the buyer and seller
share a surplus only if they reach an agreement; otherwise, no surplus is generated.
In multi-player or non-zero sum games, the goodness of an action depends on the
opponent. Policies that perform well against one opponent may perform poorly
against another.
One way around this problem is to train agents that perform well against a

particular type of opponent: humans. An agent that exploits humans is useful in
two ways: first, to exploit humans in the real world; and second, to help humans
make better decisions.
We trained a deep RL agent to exploit humans when bargaining on eBay (in

Best Offer listings, in which a seller sets a list price, and buyers and sellers may
negotiate a lower price by making offers sequentially) [Green and Plunkett 2022].
The strategy that the agent learned, as either the buyer or the seller, meaningfully
outperforms those that humans play. As the seller, the agent sells items more often
and for higher prices. As the buyer, the agent purchases items more often and for
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lower prices.
We show that most of these gains can be attained through simple tactics. For

instance, the seller exploits human buyers by rejecting most first offers, particularly
generous first offers, or those that request only a small discount on the list price.
Generous first offers signal the buyer’s willingness to pay more. By rejecting such
offers, the seller communicates that the list price is firm. Human buyers often
respond by paying the full list price.
The primary methodological contribution of our work is a template for training

RL agents to exploit humans in real-world economic games. In a perfect world, we
would have trained the agent on eBay—i.e., by making offers, observing counterof-
fers, and reinforcing offers that lead to higher payoffs. However, deep RL algorithms
require an impossibly large number of actions to learn intelligent policies. We could
neither list millions of items on eBay nor make millions of offers.
Our solution was to train a model of the real world from a massive dataset of

negotiations on eBay [Backus et al. 2020], and then to train an RL agent in that
model. This environment model is a neural network that simulates human behavior
on eBay. The model predicts when buyers arrive, what offers they make, and how
sellers respond—conditional on the features of the listing and the sequence of prior
offers. When the agent acts as a buyer, we sample seller counteroffers from the
environment. When the agent acts as a seller, we sample buyer arrivals, first offers,
and counteroffers. In this manner, the agent bargains against millions of (simulated)
humans in a couple days, and for only the cost of that compute time.
This approach is not without challenges, the most fundamental of which is that

the environment model may not perfectly correspond to the real world. This diffi-
culty has impeded applications of RL in robotics, in which agents are often trained
in a model of the physical environment. Some aspects of the physical world, such
as friction and wear on robotic arms, are difficult to model. As a result, agents
trained to perform tasks in the model often cannot perform those tasks in the
world [Kormushev et al. 2013].

4. CHALLENGES

Economic domains pose an added difficulty: confoundedness, or missing data. For
instance, a buyer or seller on eBay may attach a text message to their offer, and
while the eBay dataset we use contains an indicator for whether a text message
accompanied the offer, it does not contain the content of the message. What some-
one says in their message probably affects how the other party responds to their
offer [Backus et al. 2021]. If, say, nice messages induce acceptances and mean ones
induce rejections, our model will sometimes respond with an acceptance and other
times with a rejection—not because the true distribution is bimodal but because
messages are sometimes nice and sometimes mean.
A second challenge concerns exploration. Often during training, an RL agent

will try an unusual action, such as offering $0. In the real world, a seller will learn
that an offer of $0 is unprofitable, and a buyer will learn that it is a waste of time.
However, offers of $0 do not exist in our training data because humans never make
them; hence, there is no guarantee that the model we train from those data will
learns these truths.
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We circumvent this issue by restricting the offers that the RL agent can make to
those that are common in the data. Because the game tree is shallow—eBay limits
the buyer and seller to no more than three offers each—this constraint mostly keeps
the agent within the distribution of the training data. In settings with deeper game
trees, however, exploration will lead to novel states, even if the training data are
large and varied.
A more sophisticated approach is to penalize the agent for exploring outside

the confines of the training data. This can be done by penalizing actions that
the environment model deems unlikely, or by training an ensemble of environment
models, each on a different partition of the training data, and penalizing actions
that induce disagreement among the models. Neither approach seems to work well
in practice. Rather than smoothly converging to a policy that balances rewards and
penalties, standard RL algorithms like PPO oscillate between maximizing reward
and minimizing exploration penalty without ever converging [Moskovitz et al. 2023].
To this point, we have considered RL approaches that learn online, by training

either in the environment of interest or by training in a model of that environment.
A newer, more promising alternative may be offline RL, in which a policy is learned
directly from data [Kostrikov et al. 2021]. Offline RL proceeds in two steps. First,
the data are used to train a critic, or a neural network that estimates the sum
of discounted future rewards for taking a given action in the current state, and
then taking the best sequence of actions observed in the data. Second, a policy is
extracted from the critic by finding the best action in each state. One way to do
this is to first train a clone, or a model that predicts the distribution of actions
taken in the data, conditional on the state. Sampling actions from the clone yields
a set of candidate actions. Evaluating those actions using the critic identifies which
is best. This approach more naturally constrains exploration to actions that are in
the distribution of the training data.

By its very name, offline RL offers an alternative to online RL. However, we view
these approaches as complementary. Since the offline critic and the environment
model both process state-action pairs, they can share a neural architecture. Hence,
they can be trained jointly, by adding their losses before backpropagation. This
conjoined approach may yield a better critic—by forcing the model to predict state
transitions explicitly, rather than simply their rewards. A second advantage of
training an environment model alongside an offline critic is that the environment
model can be used to evaluate the policy extracted from the critic.

5. CONCLUSION

The challenges of applying deep reinforcement learning to real-world economic prob-
lems are significant, but so are the rewards. Methodological advancements offer
hope that this promise will soon be realized.
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