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Algorithmic Mechanism Design attempts to design algorithms that handle the
strategic behavior of selfish players. Many of the problems considered in the field
involve allocation of resources to players, and the paradigmatic abstraction is that
of combinatorial auctions. In a combinatorial auction we have n bidders and m
items. Each bidder i has a valuation function vi that gives some non-negative value
to each possible subset of the items. We assume that the valuations are monotone,
and that for each vi we have that vi(∅) = 0. In this note our goal is to find a
partition of the items S1, ..., Sn such that the total social welfare, Σivi(Si), is max-
imized. Similarly to most recent work in algorithmic mechanism design, our goal
is to design truthful mechanisms. I.e., mechanisms where the dominant strategy
of each bidder is to reveal his true valuation. We require our algorithms to run in
time that is polynomial in n and m, the natural parameters of the problem.

From a purely computational point of view, there exists an O(
√

m)-approximation
algorithm for this problem. This is the best ratio that can be obtained in poly-
nomial time. See [Blumrosen and Nisan 2007] for a recent survey. From a game
theoretic point of view, the classic VCG mechanism can be used to allocate the
items in a truthful manner. However, the VCG mechanism involves finding an
optimal solution – a computationally unfeasible task. One of the most important
questions in algorithmic mechanism design is to determine the best approximation
ratio for this problem that is achievable by polynomial time truthful mechanisms1.

We suggest tackling this question by using VCG-based mechanisms. Recall that
in the VCG payment scheme we obtain an optimal solution (O1, . . . , On), and
allocate accordingly. Each bidder i is being paid Σj 6=ivi(Oi). Thus, the utility
of each bidder i equals to the value of the optimal solution: vi(Oi)+Σj 6=ivi(Oi). It
is not hard to see that truthfulness is a dominant strategy for each bidder. What
about the running time? At a first glance, it looks that VCG does not help much
in constructing polynomial-time mechanisms, as we have already mentioned that
VCG requires finding the optimal solution, and that finding the optimal solution

1We restrict our discussion to deterministic mechanisms. If randomization is allowed then much
more is known [Dobzinski 2007; Dobzinski et al. 2006; Lavi and Swamy 2005]
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is computationally hard. One naive solution might be to use an approximation
algorithm that finds an approximate solution (S1, . . . , Sn), and uses VCG payments
with respect to this approximate solution. I.e., the mechanism pays each bidder
i Σj 6=ivi(Si). Unfortunately, in general using VCG payments together with an
arbitrary approximation algorithm does not result in a truthful mechanism. There
are, however, some approximation algorithms that are truthful when the VCG
payment scheme is used:

Definition: An algorithm is called maximal in range (MIR) if there exists a subset
R of allocations (the range of the algorithm), such that for every possible input
v1, . . . , vn, the algorithm outputs the allocation that maximizes the welfare in R.
I.e., for all input valuations v1, . . . , vn the algorithm outputs arg max(S1,...,Sn)∈RΣivi(Si).

MIR algorithms were studied in [Nisan and Ronen 2000]. Informally, Nisan and
Ronen prove that MIR algorithms are the only algorithms that become truthful
using the VCG payment scheme. MIR algorithms might look very simple, but
in some settings they are quite powerful. Perhaps the most notable example is
the case of multi-unit auctions, where a 2-approximation MIR algorithm exists.
Furthermore, in some settings the latter algorithm can be altered to obtain a PTAS
[Dobzinski and Nisan 2007b]. Another example is the case of combinatorial auctions
with subadditive bidders, where a ratio of O(

√
m) can be achieved using MIR

algorithms [Dobzinski et al. 2005]. Surprisingly, MIR algorithms were also used
to design approximation algorithms, not necessarily truthful; for example, Arora’s
PTAS for TSP in the plane [Arora 1998] is in fact maximal in its range. For
combinatorial auctions with general bidders, the subject of this letter, the best
currently known deterministic truthful mechanism obtains a ratio of O( m√

log m
)

and is maximal in its range [Holzman et al. 2004].

Main Open Question: Can a polynomial-time maximal-in-range algorithm
provide an approximation ratio of O(

√
m) for combinatorial auctions with general

bidders?

Of course, a positive answer will immediately provide us with an optimal truthful
mechanism for combinatorial auctions. To get some intuition regarding the open
question and MIR algorithms in general, let us consider the mechanism of [Holzman
et al. 2004]. This mechanism partitions the items into log m arbitrary bundles, each
of size m

log m , and allocates the items according to the best allocation of the whole
bundles to the bidders. This algorithm is clearly maximal in range. The algorithm
can be shown to run in polynomial time by recalling that an optimal allocation
can be found by dynamic programming in time that is polynomial in the number
of bidders and exponential in the number of items. In our case, since only whole
bundles are allocated, the running time is polynomial in n, and in 2log m = m, as
needed. To give some intuition regarding the claimed approximation ratio, consider
an instance with m√

log m
bidders. In this instance the items can be partitioned to

bundles S1, . . . , Sn, each of size
√

log m, such that vi(S) = 1 if S contains Si,
and vi(S) = 0 otherwise. Observe that in order to satisfy one bidder, the algorithm
might have to allocate him m√

log m
items, by allocating

√
log m bundles of size m

log m .
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Thus, by satisfying one bidder we might not be able to satisfy m√
log m

other bidders,

hence the approximation ratio. The reader is encouraged to convince himself that
this is essentially the worst-case example for this algorithm.

How can we improve upon this simple algorithm? Perhaps the first idea that
comes into mind is to partition the items in a smarter way. More generally, consider
the following class of algorithms: each bidder i provides his value for each bundle
S ⊆ Ai, where Ai is a set of bundles that is pre-determined independently of
the input. The algorithm finds the best feasible solution (S1, . . . Sn), where each
Si ∈ Ai. In other words, the valuation of each bidder is “flattened”, and the best
allocation is chosen, with respect to the flattened valuations. While all maximal-
in-range algorithms in the literature work this way, including the algorithm of
[Holzman et al. 2004], this class will not take us too far in our setting: algorithms
in the class can be implemented using value queries only2, but value queries cannot
provide an approximation ratio better than Ω( m

log m ) for combinatorial auctions
with general bidders in polynomial time [Blumrosen and Nisan 2007]. It seems
plausible that a better algorithm would require us to develop new techniques for
constructing MIR algorithms, possibly by considering iterative MIR algorithms.

One way of escaping this impossibility result is by restricting the bidders to be
k-minded: bidder i’s valuations is defined by (at most) k pairs (S1, t1), . . . (Sk, tk).
Let vi(S) = maxr{tr|Sr ⊆ S}. To escape the Ω( m

log m ) lower bound we assume
that in each pair (Sr, tr), the bundle Sr is publicly known (and the value tr is
private information). What is the power of MIR algorithms in this setting? Even
if all bidders are single-minded (k = 1), the answer is unknown. Furthermore, the
currently best truthful mechanism (not just MIR) for this setting, even for k = 2,
is the O( m√

log m
)-approximation mechanism of [Holzman et al. 2004]! As an easy

warm-up, the reader is encouraged to prove that given an MIR α-approximation
algorithm for single-minded bidders, we can construct a (k · α)-approximation al-
gorithm for k-minded bidders.

Another possible direction is to prove that MIR algorithms do not have much
power in the setting of combinatorial auctions with general bidders. For combina-
torial auctions with subadditive bidders, a lower bound of m

1
6 for approximating

the welfare using MIR algorithms exists [Dobzinski and Nisan 2007a]. This result
is meaningless for general bidders, not necessarily subadditive – even from a purely
computational perspective, without considering incentives at all, a lower bound of
Ω(m

1
2−ε ) is known. However, it might be possible to improve and extend the results

of [Dobzinski and Nisan 2007a] to the case of general bidders.
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