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1. AUCTIONING A GOOD

A second price Vickrey auction is a simple mechanism to transfer a valuable object
(a good) between a seller and n potential buyers. It treats buyers fairly, elicits their
truthful valuations for the good, and allocates the good efficiently. But the division
of the surplus between the seller and the buyers is hardly compelling. Writing a∗k

for the k-th highest valuation among buyers, and setting without loss of generality
the seller’s valuation at zero, of the total surplus a∗1 the seller gets a∗2 and the
buyers a∗1 − a∗2, thus either share can be arbitrarily large or small, depending on
the distribution of valuations. Moreover at most one buyer gets any surplus at all.

The familiar Vickrey-Clarke-Groves (thereafter VCG, see [Green and Laffont
1979]) mechanisms preserve the incentives and efficiency properties of the Vick-
rey auction, but allow more flexibility in the division of the surplus. Suppose that
explicit guidelines regulate the division of surplus: the seller should get λa∗1, the
buyers (1− λ)a∗1. We construct a VCG mechanism achieving such division with a
margin of error as small as possible. For any numbers λ−, λ+ such that

0 ≤ λ− ≤ λ+ ≤ 1 and λ+ − λ− =
n

2n−1 − 1
(1)

our mechanism guarantees to the seller, at all profiles of non-negative valuations
(aj , j ∈ N), a revenue between λ−a∗1 and λ+a∗1. For instance with 10 potential
buyers, any given share λ can be approximated within 2% at all profiles.

The simplest way to describe this (or any other VCG) mechanism is by the net
utility Ui(a) of agent i at the profile a = (aj , j ∈ N) ∈ RN

+ , where no object and
no cash transfer yields Ui = 0. Thus if i does not get the object, e.g., if ai < a∗1,
Ui(a) is a cash transfer to i, whereas if i receives the object he pays a∗1 − Ui(a)
for it. We use the notation Bk

m =
∑m

l=k

(
m
l

)
, which decreases as k grows. Assume

n ≥ 3 and pick any λ−, λ+ as in (1). Then we define

Ui(a) = a∗1 − n− (1− λ−)
n− 1

{
n−1∑
k=1

(−1)k−1(
n−2
k−1

) Bk
n−1

B1
n−1

a∗k−i} for any a ∈ RN
+ (2)
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where a∗k−i is the k-th highest valuation among buyers other than i. We have for all
a

(1− λ+)a∗1 ≤
∑
i∈N

Ui(a) ≤ (1− λ−)a∗1

We also show that no tighter bounds on the respective shares of seller and buyers
can be implemented by a strategyproof mechanism (including a non VCG one)
treating equals equally.

An interesting special case is λ+ = 1, i.e., we give most of the surplus to the
seller. In this case the best lower bound on its share is λ− = 1 − n

2n−1 (slightly
better than suggested by (1)), so the buyers get a non-negative share of surplus not
larger than n

2n−1 .
Symmetrically, if we wish to give most of the surplus to the buyers, we set

λ− = 0. The corresponding mechanism (introduced in [Guo and Conitzer 2007a;
Moulin 2007a])

Ui(a) = a∗1 − {
n−1∑
k=1

(−1)k−1(
n−2
k−1

) Bk
n−1

B1
n−1

a∗k−i} (3)

is meaningful if the object is the common property of the agents, so the seller is
replaced by a residual claimant burning the cash surplus generated by the mech-
anism. We speak in this case of an assignment problem. The cash transfer to the
residual claimant never exceeds the share ρ̂ = n−1

2n−1−1 of the efficient surplus:

0 ≤ a∗1 −
∑
i∈N

Ui(a) ≤ ρ̂a∗1 for all a ∈ RN
+

The left-hand inequality above states that the mechanism is self sufficient (also
known as feasible), it never generates a budget deficit.

Importantly, participation in the mechanism (3) is voluntary (Ui(a) ≥ 0 for all
a), because the coefficients of a∗k−i in equation (3) alternate in sign and decrease in
absolute value.

By contrast, for any strictly positive share λ−, participants in the mechanism
(2) may end up with a net loss: the payment by the agent who gets the object is
always non-negative, but can exceed a∗1 slightly 1; similarly an agent receiving no
object generally receives some cash, but could end up losing some2.

2. ASSIGNING A GOOD FAIRLY

In the assignment problem, the mechanism (3) is ”fair” because it treats equals
equally, and guarantees voluntary participation. The same is true of the Vickrey
auction, but in the Vickrey auction the budget surplus (that we call a budget loss)
may equal the entire efficient surplus a∗1, while for our mechanism (3) it never
exceeds the share ρ̂ of a∗1.

A natural strenghtening of voluntary participation is often discussed in the liter-
ature (e.g., [Moulin 1992; Cramton et al. 1987]):

1It is as high as (1 +
λ−
n−1

)a∗1 at the profile where exactly two agents have the same positive
valuation, and other valuations are zero.
2He will pay as much as

λ−
n−1

a∗1 at the profile where only one agent has a positive valuation.
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—Unanimity lower bound : Ui(a) ≥ ai

n , everyone has a claim on a fair chance to get
the object.

Unfortunately, there exists no self sufficient strategyproof assignment mechanism
meeting the Unanimity lower bound: see Lemma 1 in [Moulin 2007b]3. A related
but not directly comparable lower bound on individual net gains was recently in-
troduced by [Porter et al. 2004] (see also [Atlamaz and Yengin 2006]):

—q-fairness: Ui(a) ≥ a∗k

n , everyone has a claim on a fair share of the q-th highest
valuation.

The 1-fairness property forces the equal division of the surplus a∗1 (given self suf-
ficiency), and is obviously out of reach for a self sufficient strategyproof mechanism
(for instance, 1-fairness is stronger than the unanimity lower bound). It is easy
to check that 2-fairness is equally impossible for such mechanisms. The following
VCG mechanism (introduced by [Bailey 1997], see also [Cavallo 2006]) is 3-fair:

U3
i (a) = a∗1 − a∗1−i +

a∗2−i

n

It is self sufficient and its relative budget loss is at most 2
n :∑

i∈N

U3
i (a) = a∗1 − 2

n
(a∗2 − a∗3) ⇒ 0 ≤ a∗1 −

∑
i∈N

U3
i (a) ≤ 2

n
a∗1

Letting q vary between 3 and n, we examine the tradeoff between the less and
less generous individual guarantees under q-fairness, and our ability to minimize
the relative budget loss. For each q = 3, · · · , n, we seek the smallest number ρ̂(q)
for which we can find a q-fair strategyproof mechanism treating equals equally and
such that

0 ≤ a∗1 −
∑
i∈N

Ui(a) ≤ ρ̂(q)a∗1 for all a ∈ RN
+

With the notation Bk,k′

m =
∑k′

l=k

(
m
l

)
, and q∗ = q− 1 if q is odd,= q− 2 if q is even,

we find

ρ̂(q) =
n− 1
B1,q∗

n−1

for all q = 3, · · · , n (4)

and the correponding optimal VCG mechanism is

Uq
i (a) = a∗1 − {

q∗∑
k=1

(−1)k−1(
n−2
k−1

) Bk,q∗

n−1

B1,q∗

n−1

a∗k−i} for all a ∈ RN
+ (5)

Equations (4) and (5) imply that for any odd q, ρ̂(q) = ρ̂(q + 1) and Uq = Uq+1.
Therefore q-fairness with q odd does not cost more in terms of the index ρ̂ than
the weaker (q + 1)-fairness. If we fix an odd q and let n grow, we see from (4) that

3This is true among deterministic mechanisms. If lotteries are allowed, random assignment with
uniform probability on all participants is vacuously strategyproof and achieves the Unanimity
lower bound.
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ρ̂(q) goes to zero as 1
nq−2 ; for instance

ρ̂(3) = ρ̂(4) =
2
n

; ρ̂(5) = ρ̂(6) =
24

n(n2 − 5n + 18)

Interestingly n-fairness is free if n is odd, as in this case Un is precisely the mech-
anism (3) and ρ̂(n) = ρ̂. And if n is even, ρ̂(n) = n−1

2n−1−2 is hardly larger than
ρ̂ = n−1

2n−1−1 so the price of n-fairness is very small.
Writing {n

2 } for the integer n
2 or n+1

2 , then {n
2 }-fairness guarantees to everyone

a fair share of the median valuation. Although this is a considerably stronger
requirement than n-fairness, we note that it only requires to double the cap ρ̂(q)
on the relative budget loss. Indeed it is easy to check, with the help of Stirling
formula, that B1,n∗

n−1 ' 2B
1,{n

2 }
∗

n−1 when n grows.

3. ASSIGNING A BAD FAIRLY

We now assume that one of the n agents must perform a costly task, for which they
are equally responsible; individual costs ci of doing the job are private information.
This indivisible task is a common property ”bad”, and effciency requires to assign
it to one of the agents with lowest cost. Cash transfers may be used to compensate
this agent. For examples of this problem see [Porter et al. 2004] and the classic
NIMBY problem ([Kunreuther 1996]).

We write c∗k for the k-th lowest cost, and Vi for agent i’s net disutility, where
performing no task and getting no cash yields Vi = 0. Thus in a budget balanced
and efficient allocation we have

∑
i∈N Vi = c∗1, whereas if the task is assigned

efficiently but transfers leave a surplus,
∑

i∈N Vi ≥ c∗1.
We wish to compare the budget loss generated by a self sufficient and strate-

gyproof mechanism to a meaningful notion of the ”efficient surplus”. The intuitive
choice of the efficient cost c∗1 proves misguided. Indeed the constant ρ caps the
ratio of the budget loss to c∗1 if and only if

0 ≤
∑
i∈N

Vi(c)− c∗1 ≤ ρc∗1 for all c ∈ RN
+ (6)

There is in fact only one strategyproof mechanism treating equals equally for which
the ratio

P
Vi−c∗1

c∗1 remains non-negative and bounded above. This is the familiar
pivotal mechanism ([Green and Laffont 1979; Moulin 1986]) defined by

Vi(c) = c∗1 for all c ∈ RN
+

Here the agent who is assigned the task is not compensated, while every other agent
pays the minimal cost to the residual claimant. Thus ρ = n−1 and this huge waste
of money occurs for all c, disqualifying the pivotal mechanism.

A better estimate of the surplus from assigning the task efficiently is c∗n − c∗1,
namely the difference between the worst and the best possible assignment of the
task4. Now the number ρ caps the relative budget loss of a given mechanism if and

4Another natural choice is c − c∗1, where c = 1
n

P
N ci is the average cost of the task. Here

the benchmark is the random assignment of the taks, a perfectly incentive compatible and fair
mechanism. The corresponding formulas are different, but the gist of the results is preserved.
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only if

0 ≤
∑
i∈N

Vi(c)− c∗1 ≤ ρ(c∗n − c∗1) for all c ∈ RN
+ (7)

The pivotal mechanism does not satisfy (7) for any bounded number ρ. On the
other hand the tightest cap ρ̃ that a strategyproof and self sufficient mechanism
treating equals equally can achieve is

ρ̃ =
n− 1

2n−1 − 1
if n is odd; =

n− 1
2n−1 − 2

if n is even

and a mechanism implementing ρ̃ is

Vi(c) = c∗1 −{
n∗∑

k=1

(−1)k−1(
n−2
k−1

) Bk
n−1

B1
n−1

c∗k−i} where n∗ = n− 1 if n odd, = n− 2 if n even

Note the close analogy with the tightest cap ρ̂ and the optimal mechanism (3)
in the good assignment problem: the formulas are in fact identical for n odd. The
parallel between the two models extends to the discussion of individual guarantees.

The natural Stand Alone upper bound Vi(c) ≤ ci cannot be met by a self sufficient
strategyproof mechanism unless its relative budget loss in (7) is unbounded; and
the much stronger Unanimity upper bound Vi(c) ≤ ci

n cannot be true for any self
sufficient strategyproof mechanism.

Now q-fairness places the upper bound Vi(c) ≤ c∗k

n on individual disutility. It is
not comparable to the Stand Alone upper bound, yet it is typically much tighter.
We find that equation (5) where c replaces a defines a q-fair mechanism achieving
the cap ρ̃(q) = ρ̂(q) ((4)). Moreover this is the smallest feasible cap on the relative
budget loss of any q-fair strategyproof mechanism treating equals equally.

Therefore the tradeoffs between q-fairness and the worst relative budget loss are
identical in both models.

4. CONCLUDING COMMENTS

1. For proofs and more detailed discussion of the results described here, the reader
is referred to [Moulin 2007a; 2007b].

2. Our results in section 1 beg for a generalization to the auction or assignment
of multiple, possibly heterogenous, objects.

For the case of multiple identical objects, the generalization of the VCG mech-
anisms discussed here is straightforward: see [Guo and Conitzer 2007a; 2007b;
Moulin 2007a]. However it can be shown that VCG mechanisms no longer mini-
mize the (worst case) relative efficiency loss, therefore there is no reason to believe
they achieve the optimal tradeoff between efficiency and q-fairness.

Finally the case of multiple heterogenous objects remains entirely open: a plau-
sible conjecture is that we can improve somewhat the efficiency performance of the
canonical pivotal mechanism.
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